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Abstract
Objective. Both artificial and biological controllers experience errors during learning that are
probabilistically distributed. We develop a framework for modeling distributions of errors and
relating deviations in these distributions to neural activity. Approach. The biological system we
consider is a task where human subjects are required to learn to minimize the roll of an inverted
T-shaped object with an unbalanced weight (i.e. one side of the object is heavier than the other
side) during lift. We also collect BOLD activity during this process. For our experimental setup, we
define the state of the system to be the maximum magnitude roll of the object after lift onset and
give subjects the goal of achieving the zero state.Main Results. We derive a model for this problem
from a variant of Temporal Difference Learning. We then combine this model with Distributional
Reinforcement Learning (DRL), a framework that involves defining a value distribution by treating
the reward as stochastic. This model transforms the goal of the controller from achieving a target
state, to achieving a distribution over distances from the target state. We call it a Distributional
Temporal Difference Model (DTDM). The DTDM allows us to model errors in unsuccessfully
minimizing object roll using deviations in the value distribution when the center of mass of the
unbalanced object is changed. We compute deviations in global neural activity and show that they
vary continuously with deviations in the value distribution. Different aspects might contribute to
this global shift or signal difference, including a difference in grasp and lift force at lift onset, as well
as sensory feedback of error/roll after lift onset. We predict that there exists a coordinated, global
response to errors that incorporates all of this information, which is encoding the DTDM objective
and used on subsequent trials enabling success. We validate the utility of the DTDM as a model for
biological adaptation by using it to engineer a robotic controller to solve a similar problem.
Significance. We develop a novel theoretical framework and show that it can be used to model a
non-trivial motor learning task. Because this theoretical framework is consistent with
state-of-the-art reinforcement learning, we can also use it to program a robot to perform a similar
task. These results suggest a way to model the multiple subsystems composing global neural
activity in a way that transfers well to engineering artificial intelligence.

1. Introduction

The human brain is capable of controlling movement
to achieve adaptation to a changing environment
extremely quickly. This adaptation is much faster and
more flexible than controllers engineered by humans
can achieve, in part because our understanding of

how human motor control works is incomplete. We
argue that methods that can be applied to both bio-
logical and artificial systems are necessary in order
to bridge this gap [15]. In particular, one of the
gaps is the lack of models relating the behavioral
errors optimized during adaptationwith neural activ-
ity. Specifically, even after a large amount of training,
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behavior is stochastic and the variability of this beha-
vior has been correlated with performance [51–55].
Because of the persistent variability of behavior, feed-
back rewards and errors, which are functions of beha-
vior, are probabilistically distributed. Motor learning
would then best be framed in terms of the optimiz-
ation of a distribution of rewards or errors. And yet,
to the best of our knowledge, there are no known
approaches for modeling distributions of rewards
duringmotor learning and relating their optimization
to neural activity.

One common approach is to reduce the prob-
abilistic nature of observed rewards to a determ-
inistic function by looking at the expected reward
[63–66, 68]. We argue in this work that such
approaches are not a complete representation of the
learning process. For example, some neural systems
have been shown to optimize the expected future
reward, but others may have different, independ-
ent objectives: these may include variance reduc-
tion or risk-averse learning which involves optim-
izing the size of the tail(s) of the distribution over
future rewards. Moreover, there is a growing body
of work that shows that the brain optimizes a Min-
imum Free Energy (MFE) objective during learning
[4–14]. This objective is equivalent to optimizing
the KL-Divergence between error and ideal probabil-
ity distributions. We contribute results to the body of
work onMFE theory bymodeling rewards as random
variables and proposing that the brain is adapting by
minimizing deviations between error and ideal dis-
tributions of rewards.

We present behavioral and fMRI BOLD data gen-
erated from analysis of 16 subjects, each instructed
to minimize the rotation of an unbalanced object at
and following its lift. At regular intervals, the center of
mass of this object is rotated 180 degrees along its ver-
tical plane, forcing the subjects to adapt their strategy
to lift the object while minimizing its roll. In this
work, we study adaptation to a changing environment
over a series of trials (i.e. a series of attempted lifts).
We define the state of the system to be the maximum
magnitude of the roll of the object for each trial. Our
goal is to model the learning objective that is driving
the system to the zero state (the target state). A recent
extension of Temporal Difference Learning, called the
Temporal Difference Model (TDM) framework, sug-
gests a way to incorporate ‘closeness’ between the cur-
rent and a target state into a value function [58]. Spe-
cifically, if the negative distance from the current to
the target state is used as the reward, then the value
function quantifies the expected future proximity to
the target state. Stochasticity of the reward function
can be modeled using Distributional Reinforcement
Learning (DRL), where the reward is modeled as a
random variable. We combine the DRL and TDM
approaches in this work and refer to the complete
model as a Distributional Temporal DifferenceModel
(DTDM). DTDM requires the estimation of a value

distribution, rather than a value function, which intu-
itively corresponds to the distribution over future
distances from the target. To fit this distribution, tem-
poral differences between an updated value distribu-
tion and a past estimate of the value distribution are
used; this is in contrast to classic Temporal Difference
Learning which relies on comparisons between value
functions. Distributional temporal differences can be
interpreted as error signals and we show in this work
that the optimization of these errors serves as a good
model of motor adaptation.

We treat our experimental set up as a short-time
horizon problem where the value distribution mod-
els distances between the current and target states at
the next trial. We show that the value distribution
becomes significantly distorted after a change in the
center of mass of the object, a distortion which is
quickly corrected after a few trials. This correction
involves a shift in the mean of the value distribution,
in addition to other changes in the structure of the
distribution, including a reduction in variance and a
shrinking of the size of its tails. To find a neural basis
for all of these different characteristics and poten-
tial objectives, we look at the global neural activity.
We show that the magnitude of the distortion of the
value distribution varies continuously with the aver-
age deviation in global neural activity, suggesting that
the brain is optimizing the distortion in the value dis-
tribution during motor adaptation. Further, we show
that deviations in global neural activity are directly
proportional to those of sensorimotor activity, justi-
fying our choice of representation.

We further validate the utility of the distribu-
tional temporal difference by using it to train a
robot to perform a similar task, that is, to lift an
object with minimal roll and do so while adapting
to changes in its center of mass. We use the DTDM
to update a model of system dynamics for use in
Model Predictive Control (MPC), and as seen in
human subjects, our optimization scheme results in
exponential improvement of the model, both dur-
ing initial training and during updating. We show
that with this prediction error, the robot is able to
quickly update its model and minimize the roll of the
object.

2. Materials andMethods

2.1. Summary
In our study of motor adaptation, participants
(N = 16) performed an object lifting task during
fMRI scans that required them to minimize the rota-
tion of the object at and during lift. Subjects had to
adapt their strategy to the changing of the object’s
center of mass at regular intervals. Participants per-
formed 7 runs of 40 trials, where each trial required
them to use their thumb and index finger to vertically
lift an inverted T-shaped object with an unbalanced
center of mass while minimizing its roll at lift onset.
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Each trial required the subjects to lift the object 5 cm
from a flat surface and subjects were notified when
the magnitude of the roll of the object exceeded 5◦.
Every 10 trials, the object was rotated by 180 degrees,
requiring the subjects to change their digit position-
ing, digit load force, or some combination of the two
to achieve task success. For each of the 7 uncon-
strained runs, subjects were free to change the pos-
itioning of their thumb and index finger at will. The
position of the thumb, index finger and object (and its
roll) was tracked during the course of each trial using
a 3-cameramotion tracking system. Performance was
measured by the absolute maximum magnitude roll
generated within 250 ms following lift onset (when
the object was lifted 1 mm from the table). To allow
the subjects to familiarize themselves with the exper-
iment, the first run of 40 trials was allocated for prac-
tice and no BOLD activity was measured. For the
final 6 runs, BOLD activity was collected for all sub-
jects during all trials. Whole-brain analysis was con-
ducted to identify brain regions activated during 17
time bins, each being 400 ms long, beginning 1.2 s
before lift onset. For each block of 20 trials, blocks
of contiguous trials were averaged to yield 7 condi-
tions: pre-rotation conditions containing trials 2–4,
5-7, and 8–10; a rotation condition containing trial
11; and post-rotation conditions containing trials 12–
14, 15–17, and 18–20. This was done to smooth over
short-time variation between trials. Beta values from
whole brain analysis were extracted using the Juelich
atlas. The vector of all beta values is what we refer to
as ‘global neural activity’ in this work.

2.2. Participants
Twenty healthy subjects participated in this study
(median age: 22 years; range: 18–32; 11women). They
were right-handed and had normal or correct to nor-
mal vision. We excluded four subjects as a result of
equipment failure (n= 3) andnot finishing the exper-
iment (n= 1). Subjects gave written informed con-
sent and all study procedures were approved by the
Human Subjects Committee, Office of Research, Uni-
versity of California–Santa Barbara.

2.3. Materials, Design, and Procedure
Subjects were in supine position in the scanner.
Excessive head and body motion was minimized
with firm cushion padding of the head, neck, and
shoulders. Sandbags under the upper right arm min-
imized upper limb movement. T1 and T2∗-weighted
scans were collected followed by BOLD measure-
ments while subjects manipulated a symmetrically-
shaped object with a hidden asymmetric mass distri-
bution with the aim of preventing object roll.

Specifications of the custom-made inverted T-
shaped object with constrained and unconstrained
grasp surfaces along its vertical axis can be found in
[3]. In short, the object had a horizontal base and
a vertical Plexiglass column. On either side of the

vertical column were grip surfaces that were either
circular (for constrained contact points) or rectan-
gular (for unconstrained contact points) in shape.
A brass block, concealed by covers, was positioned
on the horizontal base on either side of the vertical
column, creating an asymmetric mass distribution
(object torque = 180 Newton millimeter (Nmm)).
The total mass of the object was 610 g.

The object was placed at arm’s length on a table
that was placed over the hips of the subject. The object
start position was rotated in a counterclockwise dir-
ection at a 30◦ offset from the edge of the table. This
position minimized biomechanical constraints that
influence object roll (the wrist would be stiffened
morewhen picking up the object when facing forward
rather than angled; the former would minimize the
object rolling in a clockwise direction). Subjects were
asked to press a button that was in a fixed position
toward the right of the object between trials. A mir-
ror attached to the head coil gave continuous viewing
of the object and the subject’s hand.

Anatomical and fMRI data were collected using
a Siemens 3 T Magnetom Prisma Fit (64-channel
phased-array head coil). High-resolution 0.94 mm
isotropic T1-weighted (TR= 2500 ms, TE= 2.22 ms,
FA = 7◦, FOV = 241 mm) and T2∗-weighted (TR
= 3200 ms, TE = 566 ms, FOV = 241 mm)
whole-brain sagital sequence images were taken. Dur-
ing object manipulation, BOLD contrast was meas-
ured with a multi-band T2∗-weighted echoplanar
gradient-echo imaging sequence (TR= 400 ms, TE=
35 ms, FA= 52◦, FOV= 192 mm,multi-band factor
8). A functional image contained 48 slices acquired
parallel to the AC–PC plane (3 mm thick; 3× 3 mm
in-plane resolution).

The position and roll of the object were meas-
ured using three motion tracking cameras that were
radiofrequency-shielded (Precision Point Tracking
System, Worldviz; see [3] for the in-scanner setup).
With this system, we recorded positions with six
degrees of freedom using near-infrared LEDs (frame
rate: 150 Hz; camera resolution: 640 × 480 VGA;
at the focal distance, the spatial accuracy is sub-
millimeter). An individual LED marker was posi-
tioned on either side of the T-shaped object on the
outer tip of the aluminum rods (to measure object
roll).

2.3.1. Experimental Design and Procedure
The experimental task consisted of four conditions:
manipulating the left- and right-weighted object at
constrained andunconstrained contact points. Before
scanning, subjects completed 40 practice trials to
familiarize themwith the audio cues instructingwhen
and how to lift the object on a given trial. The 40 trials
consisted of 10 blocked trials for each of the 4 condi-
tions (20 trials at unconstrained and 20 trials at con-
strained grasp contact points). We focus on the data
generated from the unconstrained trials in this work.
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Each trial beganwith the subject’s hand relaxed on
the button. An audio cue instructed subjects to release
the button and to reach, grasp, and lift the object
to a height marker (5 cm) until the next audio cue
(4 s after button-release time) that instructed them
to return the object and hand to their respective start
positions. The start cue of the first trial was aligned
with a functional image. An error cue was given after
trial completion if the object roll exceeded 5◦ at any
time during the trial. Stimulus timings for each block
of trials were controlled by a custom script (Vizard
Virtual Reality Software Toolkit, version 4.0, World-
viz), and the inter-trial interval was randomly chosen
to be between 2- 6 s, with a rest period between each
of the four blocks of trials. Trial order within a given
block was counterbalanced across runs and subjects.

Following practice, BOLD contrast was measured
as subjects completed 40 trials in each of 6 functional
runs (for a total of 240 trials). For each run’s fMRI
analyses, we parsed these trials in the following way,
giving 7 conditions of interest for unconstrained and
constrained conditions, respectively:

1. early pre-rotation trials 2–4
2. mid pre-rotation trials 5–7
3. late pre-rotation trials 8–10
4. rotation trial 11
5. early post-rotation trials 12–14
6. mid post-rotation trials 15–17
7. late post-rotation trials 18–20.

2.4. Kinematic data processing
Kinematic data were filtered using a fourth-order
Butterworth filter (cutoff frequency = 5 Hz). We
defined object roll as the angle of the object in the
frontal plane, with peak object roll extracted shortly
after lift onset ( 250 ms) before somatosensory feed-
back resulted in corrective responses to counter object
roll. Trials with object roll > 5were classified as errors.
Lift onset was defined as the timepoint when the
object was lifted 1 mm and remained above this value
for at least 20 samples.

2.5. MRI data preprocessing
MRI data were pre-processed and analyzed in SPM12
(Wellcome Trust Center for Neuroimaging, London,
UK). Specifically, functional images across all runs
were spatially realigned to a mean functional image
using 2nd degree B-spline interpolation, which were
then co-registered to each subject’s structural T1
image. Between-subject spatial normalization steps
were conductedwith SPM’s normalize function align-
ing each subject’s T1 and its co-registered func-
tional images into standard ICBM/MNI-152 atlas
space (interpolation: 4th degree B-spline; voxel size:
3x3x3 mm).

We used a deconvolution-based general linear
model (GLM) approach to model BOLD activity,
with a finite impulse response (FIR) function selec-
ted as a basis function (window length: 6.8 s; order:

400 ms), yielding 17 400 ms time bins. Bins 0 and
1 relate to neural activity present before lift onset;
lift onset occurs at the start of bin 3. As described
above, for each run, we modeled 7 conditions for
unconstrained and constrained trials, respectively,
with three pre-rotation conditions containing trials
2–4, 5–7, and 8–10; a rotation condition containing
trial 11; and three post-rotation conditions contain-
ing trials 12–14, 15–17, and 18-20.

Finally, we used the RobustWLS Toolbox in SPM
[48] to account for movement artifact by an unbiased
estimation of noise variance of each imaging and
down-weighting of images with high variance. Nev-
ertheless, head motion mean rotations and trans-
lations (with minimum and maximum values in
parentheses) were minimal: x:−.02 mm (−.38, .34);
y: -.29 mm (-.86, .29); z: .76 mm (-.42, 1.72);
pitch: -.008◦ (-.02, .008); roll: -.001◦ (-.009, .006);
yaw: .002 ◦ (-.005, .01).

Before use in estimating the neural deviation, the
BOLD values across different ROI’s were aggregated
into vectors. Given that the task under considera-
tion was a sensorimotor task, it would be natural
to restrict the regions under consideration to sen-
sorimotor regions. We show in figure 1 that this is
unnecessary, as the deviations generated by sensor-
imotor regions (vertical axis) are directly propor-
tional to those generated by global activity (horizontal
axis). The red lines demonstrate approximate equi-
valence: the sample deviations cluster about this line
for all conditions. The sensorimotor ROI’s selected
here were the bilateral anterior intraparietal sulcus
(AIPS), the Cerebellum, Insula, motor 4a, motor 4p,
parietal operculum, primary somatosensory cortex,
and superior parietal lobule (SPL). Before deviations
were computed, the BOLD vectors were mapped to
a lower dimensional space (the space used was ten
dimensional). A basis for this space was computed
using the Treelet Transform [42] because of its ability
to capture sparse, hierarchical structure in covariance
matrices.

One explanation for the strong effect of errors on
global neural activity is that activity is largely driven
by motor brain regions. We address this possibility
by considering a seed-based functional connectivity
analysis, where the seed regions selected were bilat-
eral motor 4a and motor 4p. This sort of analysis
could involve attempting to explain the variance in
global activity with variation in the activity of the seed
regions. We find that not only can these four regions
not explain a significant portion of the global activity,
there are no four brain regions that can. In fact, we
find that 30-40 regions are required to explain over
50% of the variance in global neural activity. To show
this, for each FIR bin, we collected vectors of BOLD
activity over all subjects and trials.We then computed
a Principal Component Analysis (PCA) and looked at
the explained variance ratios for different numbers of
principal components. The results of this experiment
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Figure 1. All plots are of sensorimotor deviations (vertical axis on each plot) against global deviations (horizontal axis on each
plot). The red line gives perfect equality and the samples cluster about this line. Figure 2 shows that a small number of brain
regions cannot be used to explain most of the variance in global neural activity, but this does not preclude the possibility that a
small number of brain regions may better encode the DTDM objective. A reasonable candidate for this small set of regions is the
set of sensorimotor brain regions, but the plot above shows that sensorimotor and global neural deviations are strongly
correlated. This suggests that sensorimotor regions are roughly encoding the same information as the set of all brain regions.

Figure 2. In this plot we show how the explained variance ratio changes in response to increasing the number of principal
components in the basis set. A possible explanation for the responsiveness of global activity to errors is that global activity is
strongly driven by a small number of brain regions (e.g. primary motor cortex). This plot illustrates the point that 30-40 principal
components (depending on the FIR bin) are needed to explain at least 50% of the variance in global neural activity. This shows
that there does not exist a small set of brain regions that can explain most of the variance in global activity.

are shown in figure 2: this plot highlights the fact that
there does not exist a small group of brain regions
that can explain most of the variance in global neural
activity.

2.6. Robotic Simulation Details
The OpenAI Gym Pick and Place environment was
modified to replicate the experimental task described
in this paper. Specifically, the block to be moved was
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Figure 3. A still frame taken from the robotic simulation. Reproduced from [71]. Copyright (c) 2016 OpenAI
(https://openai.com ).

extended along a single axis to allow for shifting of
the center of mass of the block along this extended
axis. Adapting to lift this unbalanced weight with
minimal roll along the extended axis would then test
the ability of the robot to perform a similar task to
that accomplished by the human subjects. Two prior
policies were trained using Deep Deterministic Policy
Gradients (DDPG) and Hindsight Experience Replay
(HER) to lift the block with minimal roll when its
center of mass is centered and uncentered, respect-
ively [69]. The parameters used for training were the
defaults given in [69]. A single frame taken of the sim-
ulation is shown in figure 3.

The dynamics model used for Model Predictive
Control (MPC) was a deep neural network with 3
layers and 256 neurons per layer. This network was
trained using ADAM with learning rate 0.001 and
batch size 256 [70]. Mini-batches were sampled from
a uniform distribution over elements of the replay
buffer, which had a maximum size of 1 × 10−6 ele-
ments. A zero’th order policy optimization scheme
was used within theMPC framework. For this optim-
ization scheme, 500 rollouts were used, each of length
15 timesteps.

3. Results

3.1. Errors DuringMotor Learning are
Probabilistically Distributed
First, we examine behavioral performance during
the adaptation task. Across all participants, trials
and conditions, the maximum magnitude roll over
the course of a trial, averaged over all subjects and

runs, was observed to be low for pre-rotation con-
ditions, high for rotation conditions, and low again
for post-rotation conditions. This point is illustrated
in figure 4, where we show the distributions over
states for all conditions. These plots not only make
clear the presence of errors and the fact that they are
quickly corrected, but also that the distributions over
states contain meaningful information that would
be lost by considering only the mean. For example,
the distribution generated by the rotation condition
has a different shape from any of those generated
from the pre-/post-rotation conditions (pre/post vs
rot, A2 = 89.21 431, p<0.01; throughout this work,
pre/post refers to the combination of pre-rotation
and post-rotation samples and rot refers to rota-
tion samples). This result holds after bootstrap res-
ampling of samples to correct for sample-size differ-
ences between pre-rotation/post-rotation conditions
and the rotation condition. Plots of the resampled
histograms are shown in the second row of figure
4. The resampled histograms were generated by res-
ampling pre-rotation and post-rotation samples uni-
formly at random to generate sample sizes equal to
that of the rotation condition.

Analysis of these results requires a representa-
tion of the error that takes into account the observed
distributional information. We observed that
these distributions over distances follow a Weibull
distribution

p(dp;γ,β) =
γ

β
(
dp
β
)γ−1e−(

dp
β )γ , (1)

where dp is the Lp distance and γ and β are para-
meters. This provides a convenient, closed-form

6
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Figure 4. Top: state distributions. The rotation condition results in a state distribution that has both higher mean and an entirely
different shape. Bottom: bootstrap resampling of histograms to yield balanced sample sizes across pre-rotation, rotation, and
post-rotation conditions results. The difference in the rotation histogram compared with the pre-rotation and post-rotation
histograms is preserved even in the case of bootstrap resampling.

mathematical representation for errors that we revisit
throughout this work. To validate that our dis-
tances are indeed Weibull distributed, consider first
the necessary and sufficient conditions for distances
between feature vectors to be Weibull distributed.
Given feature vectors X= [X1, . . . ,Xn] ∈ Rn and Y=
[Y1, . . . ,Yn] ∈ Rn, the Lp distance between X and Y
is Weibull distributed if |Xi −Yi|p are non-identical,

correlated, and upper bounded, for all 1≤ i≤ n.
Rather than construct amathematical proof that these
assumptions hold for human movement, we instead
demonstrate that Weibull distributions can be suc-
cessfully fit to our data.

In figure 5 we show that the empirical distribu-
tions over distances resulting from comparing pre/-
post samples with rotation samples (called rotation

7
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Figure 5. The empirical density estimates are presented as histograms and the Weibull fits are superimposed and given by the blue
dots. Top: distances are between pre-/post-rotation conditions. Bottom: distances are between rotation and pre-/post-rotation
conditions.

or rot) differ significantly from the empirical distribu-
tions generated by comparing pre/post samples with
other pre/post samples (pre/post-rot vs pre/post-
pre/post, A2 = 60.66 115, p<0.01). Moreover, fit-
ting Weibull distributions to these empirical dis-
tributions using Maximum Likelihood Estimation
(MLE), we are able to generate accurate fits, sug-
gesting that the Weibull is indeed a good model for
these data (pre/post empirical vs pre/post Weibull,

β = 2.047, γ = 1.062, A2 = 1.184 024, p>0.2; rot
empirical vs rot Weibull, β = 4.947, γ = 1.504, A2

= 1.72 791, p>0.2). We call the pre/post-rot Weibull
the error Weibull (W e) and we call the pre/post-
pre/post Weibull the ideal Weibull (W i). As subjects
adapt and W e is transformed back to W i, a num-
ber of characteristics of W e change: its mean shifts
towards 0, its long tail becomes reduced in size,
its variance shrinks, and its skew decreases. From

8
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this, it seems as if some notion of the deviation
between W e and W i would have to be used as feed-
back to a controller in order to incorporate all of this
information.

3.2. A Distributional model for prediction errors
A model of learning that relies on the deviation
betweenW e andW i can be derived from a Temporal
Difference Model (TDM) [58], which can in turn be
derived from a Temporal Difference Learning (TDL)
update. TDL is a recursive scheme tomaximize expec-
ted future rewards and requires the definition of a
value function, V(st|π), where st is the state at time
t and π is a policy. The value function can be defined
as

V(st|π) = Ep(st+1|st,at),π[rt + γrt+1 + γ2rt+2 + . . .],
(2)

V(st|π) = Ep(st+1|st,at),π[rt + γV(st+1|π)], (3)

where γ ∈ [0, 1) is a discount factor, p(st+1|st,at) is
a model of the system dynamics, E[·] is the expect-
ation operator, and rt is the reward at time t. Per-
haps the simplest approach to fitting V(st|π) using
TDL, called TD(0), relies on computing an estimator
V̂(st|π) using the update equation

V̂(st|π) = V̂(st|π)+α[rt + γV̂(st+1|π)− V̂(st|π)],
(4)

whereα ∈ R is the learning rate. This update involves
a comparison between rt + γV̂(st+1|π) and V̂(st|π).
The intuition for this update is, since the former
has slightly more information from the environment
than V̂(st|π), V̂(st|π) should be updated to be closer
to it. TDM’s define a reward function using the
notion of a goal state, sg , where rt = r(st,at, st+1, sg) =
−dp(st+1, sg) and dp is the Lp distance. This reward
results in a value function that quantifies the expec-
ted future proximity of the system to the goal state.
As applied to our experimental system, if we let t and
t+ 1 be trial numbers, since the goal state is a roll of
zero, V(st|π) would then indicate the expected mag-
nitude of the roll over future trials.

TDM’s rely on a kind of reward prediction error
to update the value function, and can also act as
a bridge between state prediction and reward pre-
diction errors. To be clear, state prediction error is
the error in predicting the next state given the cur-
rent state, and reward prediction error is the ability
to predict the future reward given the current state.
These errors, when applied to our system, quantify
the ability to predict future rolls in expectation. This
is shown in the Supplement, where we give condi-
tions for the equivalence of state and reward predic-
tion in the TDM framework. In our experimental
system, we are not simply interested in defining V

using an expectation over p(st+1|st,at) and π. We
would like to be able to use all of the information
contained in the distribution over rewards. To this
end,we incorporate TDM’s into theDistributional RL
framework

Z(st,at, sg)
D
= R(st,at, st+1, sg)+ γZ(st+1,at+1, sg),

(5)
where Z and R are the value and reward distributions,

respectively, and
D
= indicates equality in distribution

[50]. Similar to TD(0), Distributional RL updates
an estimator of the value distribution, Ẑ(st,at, sg), by

comparing R(st,at, st+1, sg)+ γẐ(st+1,at+1, sg) with

Ẑ(st,at, sg). Because these are probability distribu-

tions, Ẑ(st,at, sg) is updated to minimize

DKL(R(st,at, st+1, sg)+ γẐ(st+1,at+1, sg)||Ẑ(st,at, sg)),
(6)

where DKL(·||·) is the KL-divergence. This update is
analogous to the temporal difference learning update,
generalized to the setting where rewards are prob-
abilistically distributed. This distributional object-

ive, with R(st,at, st+1, sg) defined as the distribution
over −dp(st+1, sg), is relevant in the context of the
results presented thus far. Specifically, in the case
of short-time horizon problems, those where γ= 0,

then Z(st,at, sg)
D
= R(st,at, st+1, sg) follows a Weibull

distribution.
Keeping with the notation of the previous section,

we can think of Ẑ(st,at, sg) as being equivalent to
W i during the pre-rotation conditions. When the
center of mass changes, Z(st,at, sg) is actually W e,

though Ẑ(st,at, sg) is stillWh. The deviation between

Ẑ(st,at, sg) and Z(st,at, sg), that is, W e and W i, is
optimized during adaptation. For the experimental
system studied in this work, there are a number of
potential explanations for this deviation, from errors
in themodel of systemdynamics to errors in the beha-
vioral policy. The identification of the precise source
of the deviation between Ẑ(st,at, sg) and Z(st,at, sg) is
beyond the scope of this work. Our goal is to present

a framework for modeling learning with stochastic
rewards in a manner amenable to both biological
modeling and robotic control. With this in mind,
we note that Ẑ(st,at, sg) may be parameterized by
θ, which includes parameters for every component
of the controller used to solve the unbalanced lift-
ing task. We can now propose a model for motor
learning, specifically, a model for learning to dynam-
ically update a controller to lift an object in response
to its changing physical properties. Our model is that
the brain attempts to solve the following optimization
problem

minimize
θ

DKL(Wi||We), (7)

9
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To the best of our knowledge, the fusion of tem-
poral difference learning and distributional reinforce-
ment learning is a novel theoretical framework for
reinforcement learning. The optimization problem
above is a special case of the full DTDM optimiz-
ation, but throughout the rest of the paper, when
we refer to the DTDM problem, we are referring to
equation (7).

3.3. Global neural activity optimizes the
distributional temporal difference objective
We have already shown that behavior is updated to
optimize the deviation between W e and W i, that is,
behavior is updated according to equation (7). To
see the effect of the object rotation condition on
global neural activity, we first processed brain activ-
ity in consecutive time intervals using finite impulse
response (FIR) modeling. We then selected FIR time
bins that are likely encoding information about the lift
of the apparatus. Details of the method used to select
the ‘lift’ FIR bins are given in the Supplement. Briefly,
we first identify ‘pre-lift’ FIR bins as those before lift
onset: this occurs at FIR bin 3. We then interpret the
hemodynamic response as a stochastic process and
note that there are two distinct stimuli within each
trial: the pre-lift and lift stimuli. Given that these
stimuli are separated in time, their respective hemo-
dynamic responses will peak at different times. This
allows for the segmentation of the FIR bins as most
likely generated from either the pre-lift or the lift pro-
cess. Those most likely generated from the lift pro-
cess (bins 15-16) are called ‘lift’ bins and are used to
estimate the deviation of global neural activity result-
ing from lift. These bins are identified using a hard
threshold based upon a model of the hemodynamic
response (i.e. the Canonical Hemodynamic Response
Function, CHRF) [2]. We interpret the CHRF as a
mixture of Gamma Distributions. Using two CHRF’s
(one corresponding to pre-lift and one correspond-
ing to post-lift), we are able to segment the FIR bins
as most likely exhibiting BOLD activity from pre-lift
or post-lift. Further details on this method are given
in the Supplement.

These results are shown in figure 6. For each con-
dition (pre-rotation early/mid/late, rotation, post-
rotation early/mid/late), Weibull distributions were
generated by comparing the betas generated during
that conditionwith the betas generated during all oth-
ers. Example Weibull distributions generated during
FIR bin 0 and FIR bin 15 are shown in the left and
right columns of the top two rows of figure 6. The
distribution generated using the rotation condition
exhibits a significant deviation from the others at FIR
bin 15 but not FIR bin 0. Because pre/post-pre/post
and pre/post-rotWeibull distributions are statistically
different for lift bins but not pre-lift bins (pre/post-
rot vs pre/post-pre/post for pre-lift bins, t(df) = -
1.572 965, p>0.2; pre/post-rot vs pre/post-pre/post
for lift bins, t(df) = -8.73 572, p<0.01), this suggests

that global neural activity is perturbed by the rotation
condition, and then moves back to become indistin-
guishable from the pre-rotation state. Thuswe call the
pre/post-pre/post Weibulls ‘ideal beta Weibull distri-
butions’ orWb

i and the pre/post-rotWeibull the ‘error
beta Weibull’ orWb

e .
Our results suggest that the brain may be sens-

itive to DKL(Wi||We). In figure 7 (bottom row) we
show that the difference in the means of Wb

i and
Wb

e (using lift FIR bins) is directly proportional to
the deviation betweenW i andW e (i.e. DKL(Wi||We);
R2 = 0.55). We show in figure 7 (left, middle row)
that global neural activity is also directly propor-
tional to the TDM error, that is, errors in expected
future reward (R2 = 0.44). To understand this res-
ult, we present histograms estimating W i and W e

from two representative subjects. The transport ofW e

to W i involves more than just a shift in the mean
for both subjects, but for both (and for all other
subjects as well), the mean is indeed shifted during
adaptation.

It is important to note that TDMdoes not contain
a complete description of the errors. To see this quant-
itatively, we use a Conditional Value at Risk (CVAR)
model [16]. CVAR models offer a means of taking
advantage of the information contained in the value
distribution, beyond its mean. These models involve
optimizing the expected value in the tails of the value
distribution. For example, minimizing lower tail val-
ues results in controllers that are risk averse. Risk
aversion in our experimental system would involve
minimizing the use of actions leading to outcomes
in the tail of W i. For example, suppose that subjects
initially used lifting strategies that sometimes led to
states near zero (extremely successful outcomes), but
also often led to the apparatus being dropped, result-
ing in high roll. A risk averse learning process would
avoid this strategy, leading to fewer observations in
the tail of W i. Interestingly, because this may also
reduce the observation of as many low roll states,
the mean of W e may be unaffected by risk averse
learning. We show in figure 7 that the CVAR error
(i.e. the expected lower-tail value) is also propor-
tional to mean neural deviation (R2 = 0.46). Because
CVAR error is a characteristic of the value distribu-
tion and is independent of the means ofW i andW e,
this suggests that the global neural deviation is, in
fact, also encodingmore than just the expected future
reward.

The error DKL(Wi||We) can be interpreted in a
number of ways since different aspects of neural activ-
ity could contribute to this shift. Sensory activity as
well as error signaling could contribute to such a
shift. In addition, compensatory behaviors were also
observed during the course of a lift. When a subject
perceived a tilt, they would often attempt to change
the forces and torques used during the course of the
lift, often resulting in reduced roll. We hypothesize
that there exists a coordinated, global response to

10
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Figure 6. The top row contains the fits generated using FIR bins 0 and 15. As in the rest of this work, the distance is the L2 norm
of the difference between global neural activities. This is a unit-less measure of deviation between feature vectors.Wb

i becomes
distinguishable fromWb

e around FIR bin 15. This point is illustrated in themiddle row. This row contains the estimates of the
means of the Weibull distribution for each condition against the FIR bin index. The significant deviation ofWb

i fromWb
e for late

FIR bins is captured by these plots.

errors that incorporates all of this information and
that it is proportional to DKL(Wi||We). To show that
the global shift in neural activity can be directly used
as a feedback error signal, we use DKL(Wi||We) to fit
a robotic controller.

3.4. Robots can also optimize the distributional
temporal difference objective
Conveniently, the optimization problem in equation
(7) leads to a form that can be optimized by an arti-
ficial agent. To see this, we consider an optimization
problem similar to those used to update models of
system dynamics for use in Model-Based RL. A pop-
ular objective for fitting a model of system dynamics
is

minimize
θ

||s∗t+1 − fθ(st,at)||22, (8)

where fθ is a model parameterized by θ, s∗t+1 is the
true state at time t+ 1, and fθ(st,at) is the predicted
state at t+ 1. On its face, it may not be obvious how
equation (8) is related to equation (7). The latter
involves fitting W e, which is a distribution over dis-
tances between the current and target states, while
the former involves comparing predicted and actual
states at time t+ 1. To see the connection, consider
the fact that if fθ is a probabilistic model, even if
its performance is optimized via equation (8) (with
some steps taken to preserve non-zero variance), the
distances ||s∗t+1 − fθ(st,at)||2 will be Weibull distrib-
uted. We can think of this Weibull as W i. In the
case where the environment changes and the state
at time t+ 1 is no longer s∗t+1 but instead s ′t+1, the
performance of fθ is no longer measured by ||s∗t+1 −
fθ(st,at)||2. Instead, ||s ′t+1 − fθ(st,at)||2 is used. The
distribution over these new distances is no longer

11
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Figure 7. The top row contains histograms of pre-/post-rotation and pre-/post-rotation with rotation state distances generated
from two subjects. Modeling the movement of the mean of the rotation distribution is not sufficient to completely characterize
the learning objective. Themiddle row relates TDM and CVAR errors with the mean beta deviation, where each point is a subject.
The bottom plot illustrates the relationship between the DTDM error and the mean beta deviation. Lines of best fit are shown in
red and are generated using the RANSAC algorithm because of its robustness to outliers. Arguably, the mean neural deviation is
encoding both TDM and CVAR errors (as well as other relationships betweenW i andW e).

W i, and we call this new Weibull W e. Updating
the dynamics model using equation (7) would then
amount to bringing the predictions of fθ(st,at) as
close to s ′t+1 as they had been to s

∗
t+1 before the envir-

onment changed. We incorporate equation (7) into a
model-based RL approach. We use this model-based
framework to allow a simulated robotic arm to learn
to lift a block when the location of its center of mass
is periodically shifted.

The controller we use assumes the existence of
two stochastic policies: one that is capable of lift-
ing an object with a centered center of mass and

another that is capable of lifting an object with an
unbalanced center of mass. We make this assump-
tion because in learning to adapt to a shifting cen-
ter of mass, the human subjects in our experiment
already know how to lift the object in both orient-
ations. The task is assessing their ability to adapt,
thus this is the focus of our robotic experiment as
well. At time t of the simulation, R possible actions
are sampled from the policies. Rollouts from these
actions are simulated forward in time to t+T using
a dynamics model and the policies. This results in R
state-action trajectories of lengthT. These trajectories
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Figure 8. Top: Error of the dynamics model against the number of iterations of training algorithm. Training was performed using
mini-batch sampling, which explains the saw-tooth improvement in the error. The center of mass is switched half-way through
training, resulting in a jump in the error. This jump is corrected during subsequent updating. Bottom: The red curves are
generated by the controller fit using a centered weight with dynamics trained on a centered weight, the green curves are generated
using an uncentered weight with a dynamics model trained on a centered weight and not updated, and the blue curves are
generated using an uncentered weight with an updated model. The updated model is able to outperform the controller without a
model update.

are compared using the cumulative reward over all
T timesteps,

∑t+T
h=t c(s

i
h,a

i
h), where i∈ {1,…,R} and

c(sih,a
i
h) is the absolute value of the roll of the object

at time h. The action at time t yielding the lowest

cost trajectory is the one selected and this process is
repeated for each timestep.

The results of this experiment are shown in
figure 8. The top plot shows the error generated by
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the dynamics model with respect to the trial number.
Shortly after trial 400, the center of mass is switched,
causing a spike in the error.Within about 50 trials, the
model has adapted and its performance has improved
to be better than it was before the switch. The bottom
plot shows the performance of the controller as meas-
ured by the absolute value of the roll over the course
of the trial. The results show that the robot is able to
adapt quickly to the changing center of mass, albeit
not as quickly as a human. The robot is able to adapt
in a little over 100 trials, while the human is able to
adapt within 1-2 trials.

There are many possible sources of inefficiency
for the robotic controller that could explain this per-
formance gap. First, the dynamics model is updated
using random batch sampling from past experience.
Arguably, humans do not randomly sample from all
past experiences with the object when faced with
sub-optimal performance. They are able to draw
from past experience based upon hypotheses as to
the cause of the errors. Next, the dynamics model
is relatively simple and contains no prior know-
ledge before training about how such objects behave.
The human mind contains an enormous amount of
past experience to draw on to generate hypotheses
explaining errors. The representation of the object
in the human mind is also much higher dimen-
sional than the representation used by the robot,
containing tactile, visual, and auditory information.
Yet, while the performance of the robotic control-
ler is not at the level of the human, these exper-
iments demonstrate that the DTDM objective can
actually be used to solve a control problem that
is similar to the one solved by humans. Videos
demonstrating the robot’s performance can be found
at (Naive model: https://youtu.be/Amm5ziMSv7U;
Updated model: https://youtu.be/2zqlX-2TvCU ).

4. Discussion

We have proposed a distributional learning objective
for use during motor control and used this repres-
entation to construct a model of motor learning. To
so do, we extended Temporal Difference Models to
Distributional Temporal Difference Models. We have
shown that behavior appears to optimize this distri-
butional objective and that deviations in global neural
activity are proportional to the magnitude of the dis-
tortion of the value distribution. DTDM is not simply
useful as a model of motor learning. We have shown
that it can be incorporated into a robotic control-
ler and used for engineering applications. The strong
connection implied between neural and robotic sys-
tems suggests that improved understanding of the
brain can be directly used to improve robotic engin-
eering. Our work also suggests that work exploring
the converse claim may be successful as well. This
claim is often made indirectly, for example, by cit-
ing the neuroscientific origins of machine learning,

though there is currently no formal framework for
extracting neuroscientific principles for the purpose
of engineering AI [15]. We hope that this work will
be a step in this direction.

Our results also contribute to the accumulating
body of evidence in support of the Minimum Free
Energy (MFE) theory of neural learning [4–14]. Our
results concern motor learning, while the MFE the-
ory is posited to apply to neural learning in general.
This theory posits that learning proceeds through the
optimization of a free energy of the form Eρ[V] +
H[ρ], where V is a potential function, E[·] is the
expectation operator, and ρ is a probability meas-
ure. Interestingly, optimization of this free energy is
equivalent to optimization of DKL(ρ||e−V) [4]. In this
work, we have not explored the extent to which W i

can be approximated by a measure of the form e−V :
this information would allow for equation (7) to be
directly related to a free energy functional. This may
be an interesting direction for future work. The con-
nection between this work and MFE theory raises
questions related to the neural origins of the DTDM
objective. Specifically, is this mathematical object-
ive explicitly encoded by some population of neur-
ons? Previous work has shown that populations of
neurons are capable of performing Bayesian infer-
ence and both MFE learning and optimization of the
DTDMobjective are examples of variational Bayesian
inference [1]. Further work is necessary to explicitly
demonstrate the mechanism of how neurons are cap-
able of encoding the DTDM objective.

We have proposed a distributional framework for
motor learning, but have not explored in depth how
different aspects of the value distribution could be
used during motor adaptation. By extending TDM’s
to the setting where policies are able to optimize the
structure of value distributions, we allow for explicit
modeling of properties of learning that cannot be cap-
tured by TDM’s alone. One such property of human
learning is risk aversion, where humans not only learn
to maximize reward, they also learn to avoid poor
performance (in the case of this work, low reward).
In figure 5, we show that W e has a much longer tail
thanW i in addition to having a highermean, and that
the shape of the tail of W e is also optimized during
learning. This is caused by a reduction in the relative
number of large rolls (shrinking the size of the tails
of W e), which is a form of risk aversion. Using the
difference in the means of W e and W i obscures this
information, despite the fact that it is useful in a num-
ber of different settings. Certainly, there are situations
in which risk-averse behavior is best and situations
where it results in overly cautious behavior. By main-
taining a representation of the value distribution, the
brain is able to generate policies by optimizing differ-
ent aspects of the distribution. These policies can be
selected from, to produce behavior that is appropri-
ately cautious for a given situation. The issue of select-
ing from amongst a population of possible actions is
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interesting in the context of DTDM for other reas-
ons as well. Often, the representation of errors used
in control problems and in modeling neural con-
trollers is subordinate to the type of controller used,
for example, either model-based or model-free. This
work suggests that from both a neurological and an
engineering standpoint, this manner of thinking may
be reversed. Specifically, it may be better to develop
a representation of errors that can be used for either
model-free ormodel-based control, and then develop
a controller that can best optimize this error in the
system of interest. In the context of neurological sys-
tems, this suggests the existence of a generic error
encoding that are independent of the class of con-
troller. The utility of such a generic error representa-
tion would facilitate, for example, action selection in
the setting where a number of candidate actions must
be selected from and the candidate actions are gener-
ated from both model-free and model-based systems
[17–21]. In this setting, a generic representation of
error would allow for a universal way of comparing
the performance of controllers and selecting actions.
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