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Although the issue of identifying cointegrating relationships between time-series variables
has become increasingly important in recent years, economists have yet to reach an
agreement on the appropriate manner of modeling such relationships. In this paper, we
attempt to distinguish between modeling techniques through a comparison of forecast
statistics, while focusing on the issue of whether or not imposing cointegrating restrictions
via an error-correction model improves long-run forecasts. We find that imposing cointe-
grating restrictions often improves forecasting power, and that these improvements are
most likely to occur in models which exhibit strong evidence of cointegration between
variables. © 1998 Elsevier Science Inc.
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I. Introduction
How should economists model cointegrating relationships? Although macroeconomists
have yet to reach a consensus on this question, Hamilton (1994) has described three
approaches embraced by the literature. Assuming the presence of variables which are
nonstationary and cointegrated, the first approach is to estimate the model in levels and
allow the data to impose its own restrictions. This method results in consistent coefficient
estimates, but some efficiency losses may occur because appropriate coefficient con-
straints (due to cointegration) are not imposed. A second approach is to construct an
error-correction model where the cointegrating relationships are estimated from the data.
The third approach also constructs an error-correction model, but in this case, the
cointegrating relationships are derived from theoretical considerations rather than from
estimation [e.g., Cochrane (1994)]. The possibility, however, of imposing false restric-
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tions and, thus, biasing the coefficient estimates (and, consequently, the dynamics of the
model) often leaves economists wary of the latter two approaches and favoring the
unrestricted levels model1 [see, for example, Bernanke and Blinder (1992)]. Engle and
Granger (1987, p. 259), however, warned against rejecting the error-correction model:
“. . . vector autoregressions estimated with co-integrated data will be misspecified if the
data are differenced, and will have omitted important constraints if the data are used in
levels. Of course, these constraints will be satisfied asymptotically but efficiency gains
and improved multi-step forecasts may be achieved by imposing the constraints.” Con-
troversy over the power of available specification tests for unit roots, such as the
Dickey-Fuller test, only adds to the problem of choosing an appropriate modeling
technique. Which approach is best? In this paper, we attempt to distinguish between these
three approaches to modeling cointegrating relationships by comparing the out-of-sample
forecasting power at short-, medium-, and long-run horizons of various models.

The majority of research involving cointegration has focused on hypothesis testing, not
forecasting, because the presence of long-run relationships among variables is often a
prediction of a theoretical model. For example, the modern interpretation of the permanent
income hypothesis [Hall (1978)] predicts that consumption follows a random walk, and
that consumption and total income should be cointegrated. Cochrane (1994) showed that
the consumption-income cointegrating vector enters significantly in a two-variable VAR
model. Another example is the Fisher (1930) hypothesis, which predicts a cointegrating
relationship between nominal interest rates and inflation. Shapiro and Watson (1988)
imposed this relationship in a five-variable VAR model, and Mishkin (1992) extensively
tested the cointegration hypothesis implied by the Fisher equation.

Previous work in forecasting variables in cointegrated systems includes that by Engle
et al. (1989), Engle and Yoo (1987), Hall et al. (1992), and Fanchon and Wendel (1992).
Most relevant to our research is the latter three papers. Engle and Yoo (1987) designed a
Monte Carlo experiment to compare the forecasting power of an unrestricted vector
autoregression model in levels versus that of an error-correction model where the cointe-
grating vector is estimated via ordinary least squares. They [Engle and Yoo (1987, p. 149)]
claimed these two techniques are the “serious contenders” for an appropriate estimation
technique and thus chose not to examine an error-correction model in which the cointe-
grating vector was derived from theory. Using mean square forecast errors to compare
performance, they found the error-correction model to be superior in the long-run (7–20
periods), but not the short-run (,7 periods).2 Hall et al. (1992) used theoretical error-
correction, levels VAR, and naive (no change) models to forecast changes in the yields of
U.S. Treasury Bills. Curiously, they examined only one-step ahead forecasts, thereby
ignoring the potential of cointegrated variables to aid in long-run forecasting. Hall et al.
(1992) found the error-correction model provided forecast improvements. Fanchon and

1 Cointegrating restrictions and first differencing the data are both forms of linear subtractive restrictions,
which when falsely imposed lead to problems of specification bias, including potential sign reversals. For a
discussion of the dangers of subtractive restrictions, see Haynes and Stone (1981).

2 Recent research has questioned the usefulness of ranking models with out-of-sample forecasting statistics.
Specifically, Clements and Hendry (1993, 1995) have objected to the conclusions of Engle and Yoo (1987) by
noting that the model rankings depend upon the variable forecasted and the transformation of that variable.
Although we acknowledge this criticism, we feel that out-of-sample forecasting statistics provide useful results.
As theory indicates that the levels of the variables in question are cointegrated, it is appropriate to compare
models on the basis of their ability to forecast levels of those variables. Also, our choice of variables to forecast
depended upon what we felt would be the most likely variable of interest in a model. Based on these criteria,
we chose output, inflation, and nominal interest rates as our variables to forecast.
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Wendel (1992) compared the power of levels VAR, Bayesian VAR, and error-correction
models to forecast cattle prices. They found the VAR in levels model to yield the best
forecasts.

The results of our research indicate that error-correction models in which theoretical
cointegrating relationships are imposed tend to outperform those in which the relation-
ships are estimated. These theoretical error-correction models may produce superior
forecasts when compared to difference or levels models, but this result hinges critically on
the supporting evidence suggesting cointegration. As would be expected, forecasts are
most likely to be improved by applying error-correction techniques if the data strongly
supports the cointegration hypothesis. Difference models tend to fare well across most
models, while levels models in general produce very poor forecasts. We hypothesize that
models not sufficiently restricted by theoretical assumptions or empirical evidence may
have a tendency to overfit the in-sample data.

II. Methodology

The Models

Considerzt, ann 3 1 vector of nonstationary (I(1)) time-series variables. Assume that two
or more of the elements ofzt form a stationary (I(0)) linear combination. In other words,
there exists cointegration between some of the elements ofzt. The error-correction model
representing such a system of variables is3:

Dzt 5 awt21 1 O
i51

j

g iDzt2i 1 «t
EC,

wherewt 5 b9zt is the cointegration term;b is an n 3 1 vector of coefficients in the
cointegrating vector4; a is ann 3 1 vector of coefficients, and«t

EC is a vector of Gaussian
error terms. The elements of the cointegrating vector can be determined either through
theory or estimation.

We employed two approaches for obtaining values forb. The first is to let theory
determine the value. For example, the approach taken by Cochrane (1994) and Shapiro
and Watson (1988) setsb 5 [1 21]. Although this theoretical vector may yield a series
which appears to beI(0), it does not necessarily capture the true relationship between the
two series. If [1 21] is not the true cointegrating vector, the empirical model is
misspecified. Alternatively, a widely-used method for estimating the coefficients of a
cointegrating vector is that of Engle and Granger (1987). The Engle-Granger (EG) method
regresses the first element ofzt on the other elements, and the resulting OLS estimates
serve as the coefficients of the cointegrating vector. We examined models containing both
theoretical and estimated cointegrating restrictions. For clarity, we have denoted models
with theoretical cointegrating restrictions as EC–T and those with empirical restrictions as
EC–E. This convention is followed below with respect to other models.

3 Constant terms are suppressed throughout this paper.
4 This specification assumes only one cointegrating vector. If there exists more than one cointegrating vector,

thenb will be an n 3 r matrix with r being the rank of the cointegrating matrix.
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If, however, cointegration is not present in the variables ofzt, then the above error-
correction models will be misspecified. For this reason, we also examined the forecasting
properties of two other models. First, consider a VAR model in pure differences:

Dzt 5 O
i51

j

g iDzt2i 1 «t
D. (VARD)

This type of model is often recommended when the elements ofzt are difference stationary
but not cointegrated. Second, consider a VAR model in pure levels:

zt 5 O
i51

j

g izt2i 1 «t
L. (VARL)

As noted earlier, estimating the VAR in levels avoids the possibility of imposing false
restrictions on the model. The tradeoff for ensuring consistent estimators, however, may
be a decrease in out-of-sample forecasting power. Table 1 summarizes the various
categories of models.

In selecting the elements ofzt, we focused on two pairs of variables commonly believed
to be cointegrated: 1) consumption and output, and 2) nominal interest rates and inflation.
Whereas consumption and output are generally accepted to be cointegrated, the relation-
ship between nominal interest rates and inflation is still a matter of debate. Controversy
surrounds the issue of whether or not the nominal interest rate and inflation data contain
unit roots. If either the inflation rate or the nominal interest rate is stationary, then the two
variables are not cointegrated. In the absence of cointegration, a model which imposes a
cointegrating restriction between nominal interest rates and inflation should result in poor
forecasts of either variable. The same holds true for consumption and output. Imposing a
cointegrating restriction when it does not exist should harm forecasting power, particularly
in the long-run.

It has been suggested that two-variable models of inflation and interest rates are
misspecified due to government deficit spending [for example, see Correia-Nunes and
Stemitsiotis (1995)]. Recall that real short-term rates were very low in the mid-1970s, but
increased sharply after 1980 to a peak in 1985. It is very possible that the U.S. fiscal
position, particularly large budget deficits in the 1980s, influenced movements of the real
interest rate. If this is true, failure to include this information might result in inaccurate
forecasts. To account for the U.S. fiscal position, we also considered a three-variable
augmented Fisher model which attempts to capture the effect of government deficit

Table 1. Summary of Models

Model Description

EC–T Error-correction model with theoretical cointegrating vector
EC–E Error-correction model with estimated cointegrating vector
VARD VAR model in pure differences
VARL VAR model in unrestricted levels

Note: Four-variable VAR models were written in differences (M4) and levels (M5) only. Univariate models were in levels
only. Two- and three-variable models were examined in all five versions.
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spending on interest rates by including a deficit to GDP variable.5 Including this speci-
fication yields three distinct theoretical models to form the elements ofzt. First, the
Permanent Income hypothesis, in which the elements ofzt are consumption and output.
Second, the Fisher equation, with nominal interest rates and inflation rates as the elements
of zt.

6 Third, an augmented Fisher equation, which adds the deficit to GDP ratio to the
standard Fisher equation. The theoretical cointegrating vector for the first two sets of
models isb 5 [1 21], while for the augmented Fisher equationb 5 [1 21 l], with l to
be estimated via OLS. For comparison with models implied by the Fisher equations, we
estimated four-variable VAR models of output, money, prices, and nominal interest rates
(the popular YMPR class of models) in differences (VARD) and levels (VARL). As a
baseline, we also estimated univariate levels models of output, inflation and nominal
interest rates.

To determine appropriate lag lengths for the models, we relied on the likelihood ratio
test outlined in Hamilton (1994, pp. 296–298). We began by testing the null hypothesis
of two lags vs. the alternative of three lags. If the null hypothesis was rejected, we tested
for the null of three lags vs. four lags. Table 2 lists the results. The likelihood ratio tests
suggested a parsimonious specification for each model. In most cases, the tests suggested
a two-lag specification, while three lags appears to be appropriate for the Fisher equation
and augmented Fisher equation VARL models. These lag lengths follow Cochrane (1994),
in which he estimated a cointegrated consumption/output model with two lags.

Forecasting

We used comparisons of out-of-sample forecasting ability to evaluate the alternative
models. Whereas in-sample comparisons are prone to overfitting of the data, out-of-
sample forecasting measures the predictive power of a model. The forecasting procedure
was as follows: An initial estimation period was chosen for each system of equations. For

5 We thank an anonymous referee for this suggestion.
6 The Fisher hypothesis refers toex antereal interest rates, the use of which requires a methodology for

creating expected inflation rates. This complication can be overcome by noting that if theex anteinflation rates
are cointegrated with nominal interest rates, then so areex postinflation rates. This follows from the rational
expectations argument that the realized inflation rate from timet to t 1 1 is the expected inflation rate plus an
unforecastable stationary error term which is orthogonal to any information known at timet. For details, see
Mishkin (1992). Also, any two cointegrated variables are also cointegrated at all leads and lags, although the
cointegrating vector may differ [Engle (1991)].

Table 2. Lag Length Tests:x2 Statistics

System H0:

Models

EC–T EC–E VARD VARL

ct, yt 2 vs. 3 lags 2.61 (4) 2.82 (4) 3.40 (4) 4.25 (4)
it, pt 2 vs. 3 lags 5.7 (4) 5.87 (4) 6.28 (4) 24.21* (4)

3 vs. 4 lags — — — 7.00 (4)
it, pt, dt 2 vs. 3 lags 10.69 (9) 10.54 (9) 9.57 (9) 38.53* (9)

3 vs. 4 lags — — — 9.70 (9)
yt, mt, pt, rt 2 vs. 3 lags — — 19.44 (16) 69.16* (16)

3 vs. 4 lags — — — 21.87 (16)

Notes: Degrees of freedom for each test are listed in parentheses. An * indicates significance at the 10% or smaller level.
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consumption/output models, the initial estimation period was 1948:2–1965:2. This start-
ing date closely corresponds with that of Cochrane (1994). Models containing interest
rates were initially estimated over the period 1960:2–1972:2. The starting date for these
models was limited by the lack of money data (for the four-variable model) prior to
1959:1. After estimation, values of output, nominal interest rates, and/or inflation were
forecast from 1 to 40 quarters ahead. The model was re-estimated, with the end date
moving forward one quarter, and variables were again forecast from 1 to 40 quarters
ahead. This process continued until the end date of 1993:1, thereby generating a vector of
1 to 40 quarter ahead forecasts for each variable. A forecast horizon of 40 quarters was
chosen to illustrate the forecasting power of the models in the short-, medium-, and
long-runs. Because cointegration is a long-run property of the data, we expected the
effects of correctly or incorrectly modeling cointegrated variables to be most striking at
longer horizons. To evaluate the performance of the models, the root mean square error
(RMSE) was calculated for each forecast period.

Some care must be taken when evaluating models based upon RMSE statistics.
Problems arise when an outlier, in particular a very poor forecast, causes a model to
exhibit large RMSE values at some forecasting horizons. To account for this issue, we
employed the forecasting encompassing test of Chong and Hendry (1986). The forecast-
encompassing technique addresses the issue of whether or not the forecast of one model
contains useful forecasting information not contained in a competing model. For exam-
ple7, consider 2 timet 1 j ahead forecasts of variablex (xt1j), denoted byxt1j

f1 andxt1j
f2 .

The forecasts were generated by models 1 and 2, respectively. The test was implemented
through the regression equation:

xt1j 5 axt1j
f 1 1 ~1 2 a! xt1j

f 2 1 «.

Model 1 encompasses model 2 ifa Þ 0, or, in other words, if the forecast generated by
model 1 contains useful information not contained in the model 2 forecast. Ifa Þ 1, then
the opposite occurs and model 2 encompasses model 1. Ifa 5 1, then model 1
encompasses model 2 but model 2 does not encompass model 1. This indicates that model
1 contains superior forecasting information compared to model 2. Model 2 is superior to
model 1 whena 5 0. In this case, model 2 encompasses model 1, but model 1 does not
encompass model 2. Thus, the forecast-encompassing test is implemented by generating
the competing forecasts and performing the above regression. The null hypotheses,a 5
0 anda 5 1, are then tested using a standardt test. If a 5 1 anda 5 0 or a Þ 1 anda
Þ 0, the test is inconclusive and neither model displays clear superiority over the other.

III. Results

Data

The variables considered are consumption (ct), output (yt), the nominal interest rate (it),
the money stock (mt), inflation (pt), and the deficit to GDP ratio (dt). Following Cochrane
(1994), consumption is defined as the log of consumer spending on nondurables and
services. Also following Cochrane, output is the log of private GNP, defined as GNP
minus government spending. Both consumption and output are real variables measured in

7 This description follows Koenig (1996).
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1987 dollars. Nominal interest rates are the average of monthly rates of 90-day Treasury
Bills. Ex-anteinflation is proxied by the difference in the log of the price level between
periodt and periodt 2 1, pt [ ln pt 2 ln pt21. The real interest rate isrt [ it 2 pt. The
price level is the average of monthly data of the consumer price index with all items
included. The money stock is the average of monthly data of M2. Models were estimated
with quarterly U.S. data obtained from Citibank’sCitibasedata set.

Data Analysis

A necessary requirement for cointegration is that the variables in question are each
integrated of the same order. Whetherpt and it contain unit roots is, however, a
controversial issue.8 That ct and yt contain unit roots is less controversial, but the low
power of unit root tests still leaves room for doubt. As the unit root controversy is beyond
the scope of this paper, we followed convention by listing Dickey-Fuller test statistics for
ct, yt, pt, it, and dt in Table 3. The tests were based on data corresponding to model
estimation dates using six autoregressive corrections.9 In all five cases, the null of a unit
root was not rejected at the 10% significance level. Thus, the Dickey-Fuller tests suggest
that first differencing these series is appropriate.

Recalling that two series (integrated of the same order) are cointegrated if a linear
combination of the series is a stationary (I(0)) series, Table 3 also lists Dickey-Fuller test
statistics forit 2 pt, ct 2 yt, andit 2 pt 2 ldt. This is the method by which Shapiro and
Watson (1988) tested for cointegration betweenit andpt. As noted earlier, however, this
formulation imposes the theoretical cointegrating vectors onto the variables. As an
alternative, we also utilized the EG method for determining cointegrating vectors and
regressedit on pt, ct on yt, andit on pt anddt, and performed Dickey-Fuller tests on the
residual series, RES1, RES2, and RES3, respectively. The results are also listed in Table
3. We failed to reject the null of a unit root in both the theoretical and estimated
cointegrating relationships betweenit andpt andit, pt, anddt. This indicates that there is

8 Mishkin (1992) presented an extensive battery of stationarity tests on inflation and nominal interest rates.
9 Alternative lag lengths failed to appreciably alter our results.

Table 3. Unit Root Tests

Series Dickey-Fullert Statistic

ct 0.22
yt 21.51
pt 22.44
it 22.11
dt 21.82
it 2 pt 22.17
ct 2 yt 23.79**
it 2 pt 2 ldt 22.09
RES1 22.10
RES2 23.79**
RES3 22.38

Notes: Following Shapiro and Watson (1988), the regressions forct, yt, andct 2 yt included a constant term and a time trend,
and had a 10% critical value of23.12. All other regressions included only a constant term and had a 10% critical value of22.57.
An * indicates significance at the 10% level. A ** indicates significance at the 5% level.
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no cointegration present among the elements of both the Fisher and augmented Fisher
equations. We rejected the null of a unit root in both the theoretical and estimatedct and
yt relationships. This indicates that these series are cointegrated.

Additionally, we used the Johansen maximum likelihood procedure to test for cointe-
gration within the three systems of equations we analyzed. Table 4A lists thelmax and
trace statistics from multivariate unit root tests on each of the systems. The null hypothesis
of no cointegration (two vs. one unit root) was rejected by both tests for the consumption/
output system, providing evidence consistent with the Dickey-Fuller results in Table 3.
The results for the interest rate/inflation rate system are contradictory. Thelmax statistic
indicates no cointegration, while the trace statistic indicates the opposite. Stronger
evidence of cointegration is found in the interest rate/inflation rate/deficit ratio system.
Both test statistics rejected the null hypothesis of no cointegration (three vs. two unit
roots), while the null of one cointegrating vector against two cointegrating vectors (two vs.
one unit root) was not rejected, indicating there exists one cointegrating vector in the
system. Table 4B lists likelihood ratio test statistics for tests of linear restrictions on the
cointegrating vectors. In the two-variable systems, we were unable to reject the null that
the cointegrating vectors are [121]. In the three variable system, we rejected the null that
the cointegrating vector is [121 l], where thel corresponds with the parameter ondt.
Given the above results, it appears that there is evidence to support the imposition of the
linear restrictions implied by the theoretical cointegrating vectors for the consumption/
output systems, while less evidence exists for imposing the theoretical restriction in the
remaining systems.

Based upon the above test results and following prior research, we expect to find the
following results: First, if the cointegrating restrictions were correctly identified, error-
correction models should yield the best forecasts. If theory correctly defines relevant
restrictions, then models with the theoretical cointegrating vector (EC–T) should outper-
form those with the estimated cointegrating vector (EC–E). If the theory does not hold, but
the series are still cointegrated, then the opposite may occur. Note that it is possible for
the theoretical parameters to be incorrect, but still be closer than the estimated parameters

Table 4. Johansen Procedure Test Results

A. Multivariate Unit Root Tests

System H0: lmax Trace

ct, yt 2 vs. 1 unit roots 23.86* 31.71*
it, pt 2 vs. 1 unit roots 10.60 17.10*
it, pt, dt 3 vs. 2 unit roots 30.09* 42.02*

2 vs. 1 unit roots 7.47 11.93

B. Tests of Linear Restrictions on the Cointegrating Vectors

System H0: x2 (DOF)

ct, yt b 5 [1 21] 0.38 (1)
it, pt b 5 [1 21] 0.52 (1)
it, pt, dt b 5 [1 21 l] 9.53 (1)*

Notes: The 10% critical values for thelmax statistic are 13.39 and 10.60 for the null of three unit roots and the null of two
unit roots, respectively. The corresponding 10% critical values for the Trace statistic are 26.70 and 13.31. Full details concerning
the test statistics are found in Johansen and Juselius (1990). Testing was performed using the CATS for RATS econometric
package. The number of lags corresponds to those determined in Table 2. An * indicates significance at the 10% level.
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to the true values. Second, if the series are not cointegrated and do not contain units roots,
then the unrestricted levels models (VARL) will yield the best forecasts. If unit roots are
present, then the best forecasts will come from pure difference models (VARD). Finally,
the imposition of theoretical or empirical cointegrating restrictions, if true, should aid in
long-run forecasts.

Results

For ease of exposition, we begin by summarizing our conclusions in the following list:

● Imposing a theoretical cointegrating restriction (EC–T models) often improves
forecasting power.

● Theoretical cointegrating restrictions are preferred to empirical cointegrating restric-
tions (EC–E models).

● As we became more confident in the presence of cointegration between the variables
examined, the benefits from imposing cointegrating restrictions increased.

● VARs in pure differences performed well across models.
● VARs in pure levels tended to have poor forecasting ability.

Table 5 contains output forecast results generated by the output/consumption models.
The RMSE statistics reveal that short-run forecasts were very similar, but the models
began to diverge after eight quarters. Most notably, the theoretical error-correction model
(EC–T) yielded the best long-run forecasts. The remaining models, EC–E, VARD and
VARL, all produced similar forecasts, while all models were superior to the univariate
levels model.

Tables 6 and 7 report forecasting results for inflation/interest rate models. In compar-
ison to the output/consumption models, the results are less clear. First consider the
two-variable Fisher equation models. Again, we see a pattern of similar short-run forecasts
with divergence after eight quarters. Unlike the output forecasts, however, the difference
(VARD) forecasts appear to be superior to the EC–T models. Also, the estimated
error-correction model (EC–E) performed poorly at long-run horizons. This indicates that
the EC–T model is preferred to the EC–E model, or, in other words, imposing theoretical

Table 5. Output Forecasts: RMSE

Period

Univariate Two-Variable Models

Levels EC–T EC–E VARD VARL

1 0.011 0.098 0.010 0.010 0.010
2 0.018 0.015 0.016 0.017 0.017
3 0.025 0.020 0.023 0.023 0.023
4 0.032 0.024 0.028 0.028 0.028
8 0.054 0.036 0.044 0.047 0.043
16 0.080 0.047 0.057 0.062 0.057
24 0.10 0.053 0.066 0.069 0.066
32 0.13 0.062 0.077 0.080 0.082
40 0.17 0.077 0.092 0.097 0.11
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cointegrating restrictions appears to be preferable to estimated restrictions. Overall,
however, a difference model is preferred to an error-correction model.10

The three-variable augmented Fisher equation models illustrate an attempt to increase
forecasting power by imposing additional theory. Within this class of models, the EC–T
model generally dominated the VARD model, particularly in the long-run. This result is
opposite that of the two-variable models, indicating that the Fisher effect might be more
significant when augmented to include the deficit to GDP ratio. The VARD model,
however, performed quite well, and was superior to both the EC–E and VARL models.

Across all inflation/interest rate models, the best forecasts were generated by the
four-variable VARD models, while the univariate levels model generated inflation fore-
casts comparable to those of the best two- and three-variable models. The VARL models

Table 6. Nominal Interest-Rate Forecasts: RMSE

Period

Univariate Two-Variable Models Three-Variable Models
Four-Variable

Models

Levels EC–T EC–E VARD VARL EC–T EC–E VARD VARL VARD VARL

1 1.00 1.05 1.07 1.05 1.10 1.05 1.08 1.06 1.12 1.07 1.17
2 1.74 1.76 1.81 1.76 1.90 1.76 1.85 1.78 1.94 1.72 1.98
3 1.94 1.94 2.00 1.94 2.14 1.98 2.05 1.99 2.23 1.94 2.24
4 2.23 2.25 2.36 2.24 2.54 2.29 2.41 2.28 2.66 2.22 2.71
8 3.49 3.40 3.67 3.36 4.13 3.35 3.83 3.41 4.39 3.42 4.35
16 4.65 5.14 5.87 4.64 7.73 4.67 6.61 4.72 9.00 5.00 7.08
24 6.76 6.38 9.75 5.34 16.07 5.86 12.13 5.57 21.50 6.26 12.02
32 9.20 6.43 16.23 6.03 35.53 5.89 22.78 6.18 54.39 7.15 19.45
40 13.99 7.97 30.22 6.73 85.27 6.82 46.47 6.90 145.32 7.97 33.96

Table 7. Inflation-Rate Forecasts: RMSE

Period

Univariate Two-Variable Models Three-Variable Models
Four-Variable

Models

Levels EC–T EC–E VARD VARL EC–T EC–E VARD VARL VARD VARL

1 1.88 1.95 1.98 1.88 1.95 1.99 2.03 1.93 2.08 2.52 2.69
2 2.36 2.68 2.73 2.53 2.71 2.71 2.75 2.57 2.86 2.55 2.76
3 2.52 2.95 2.96 2.72 2.94 2.95 2.92 2.73 3.07 2.63 2.90
4 2.93 3.46 3.54 3.18 3.45 3.40 3.44 3.14 3.53 2.94 3.18
8 4.17 4.99 5.63 4.63 5.36 4.74 5.56 4.66 5.33 4.20 4.57
16 4.21 6.15 8.01 5.51 6.72 5.45 7.76 5.61 6.80 4.39 5.42
24 4.83 6.65 11.50 6.18 8.96 6.22 11.21 6.35 10.04 4.68 7.32
32 6.60 7.54 17.14 7.83 15.11 6.63 17.93 7.95 18.66 5.71 10.27
40 8.06 9.19 26.18 9.01 25.71 7.83 31.71 9.19 42.96 5.61 13.33

10 Some readers might note that the cointegrating vector implied by the Fisher equation fails to take into
account the effects of taxes on interest rates, a result known as the Darby (1975) effect. The effect of taxes
implies that the cointegrating vector between inflation and nominal interest rates will be [12 1/(1 2 T)], where
T is the lender’s marginal tax rate on interest earned. Estimates of the appropriate coefficient on inflation ranged
from 1.47 to 2.0 [see Ayanian (1983)]. To determine if changing the cointegrating vector [121.47]. The
forecasts did not change sufficiently to have any qualitative effects on our results. This result is robust for values
of the coefficient on inflation of 1.47, 1.57, and 1.67.
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and the EC–E models produced the poorest results. Univariate interest rate forecasts
compared favorably at short- and medium-run horizons, but poorly in the long run. In
contrast, the univariate inflation forecasts were superior to most other models, except the
four-variable VARD model.

The RMSE statistics tend to suggest that imposing theoretical restrictions, when true,
via an error-correction model, may yield superior forecasts. As noted earlier, however,
RMSE statistics may be biased by the presence of an outlier, leading the researcher to
erroneous conclusions. As an alternative to the RMSE statistics, we also performed
forecast encompassing tests as outlined in Section II. Forecast-encompassing results for
the output/consumption models are listed in Table 8. An * indicates the EC–T forecast was
clearly superior to that of the competing models at the listed forecast horizon. A †
indicates the opposite. Lack of either an * or a † indicates the test was inconclusive. Table
8 shows that none of the competing output/consumption models were superior to the
EC–T model. The EC–T model, however, is preferred to the others only in the short-run.
In the case of the EC–E model, the EC–T model is preferred at only the one-quarter
horizon. Thus, while the forecast-encompassing results do not directly indicate that
imposing theoretical cointegrating restrictions produces superior forecasts in the long-run,
it is clear that the opposite is also not supported. Imposing the restrictions did notharm
forecasts. The inability of the forecast encompassing tests to distinguish between models
may also have been due to a lack of data.

Among the inflation/interest rate models, the most significant competition appeared
between the EC–T and VARD models. Given this result, we focused the forecast-
encompassing tests on these two models for the two- and three-variable models. Tables 9
and 10 list the results for the inflation and interest-rate models, respectively. An exami-
nation of these tables fails to yield a clear picture. At some horizons, the EC–T model was
superior to the VARD model, while at others, the opposite was true. These results coincide
with the murky RMSE results. It is unclear whether or not imposing cointegrating
restrictions aids forecasting.

Tables 11, 12, and 13 report forecast-encompassing results for a comparison of
univariate models vs. EC–T models. For output forecasts, the EC–T model was superior
to the univariate model in the short-run, but the two models could not be differentiated in

Table 8. Output Forecasts: Forecast-Encompassing Results: Significance Levels

Period

Two-Variable models

EC–T vs. EC–E EC–T vs. VARD EC–T vs. VARL

H0: a 5 0 H0: a 5 1 H0: a 5 0 H0: a 5 1 H0: a 5 0 H0: a 5 1

1 0.01* 0.52 0.00* 0.57 0.00* 0.59
2 0.00 0.09 0.00* 0.27 0.00* 0.54
3 0.00 0.01 0.00* 0.28 0.00* 0.14
4 0.00 0.00 0.00* 0.36 0.00* 0.3
8 0.00 0.00 0.00* 0.62 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00
32 0.00 0.00 0.00 0.09 0.00 0.00
40 0.00 0.00 0.00 0.04 0.00 0.00

Note: An * indicates instances when the EC–T model produced forecasts superior to the competing model, while a †
indicates the opposite. The lack of an * or a † indicates the test was inconclusive.
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the long-run. Univariate inflation forecasts were almost always preferred to the EC–T
inflation forecasts. In contrast, no clear difference emerged between univariate and EC–T
interest-rate forecasts. Note that the univariate comparisons of the EC–T model follow the
pattern of previous comparisons: Output models compared favorably, while the opposite
was true for inflation/interest-rate models.

How well do these results match our predictions? Among the output/consumption
models, RMSE statistics suggest that imposing the theoretical cointegrating restrictions
improves long-run forecasts, while the forecast-encompassing tests provide no evidence to
the contrary. In comparison, imposing the theoretical cointegrating restrictions did not
consistently improve forecasts for inflation/interest-rate models. This result is evident
from both the RMSE and forecast-encompassing statistics. The inability of cointegrating
restrictions to significantly improve inflation/interest-rate forecasts initially seems puz-
zling. If interest rates and inflation are cointegrated, as is often assumed, then lack of an
error-correction term should cause the differences model to be misspecified. If they are not
cointegrated, one would expect models which impose the cointegrating vector to result in

Table 9. Inflation-Rate Forecasts: Forecast-Encompassing Results: Significance Levels

Period

Two-Variable Models Three-Variable Models

EC–T vs. VARD EC–T vs. VARD

H0: a 5 0 H0: a 5 1 H0: a 5 0 H0: a 5 1

1 0.14 0.00† 0.12 0.01†
2 0.03 0.00 0.06 0.00
3 0.02 0.00 0.02 0.00
4 0.05 0.00 0.09 0.00
8 0.36 0.00† 0.41 0.08†
16 0.97 0.00† 0.03* 0.36
24 0.04* 0.23 0.01* 0.92
32 0.08 0.05 0.00* 0.21
40 0.12 0.18 0.23 0.42

Note: An * indicates instances when the EC–T model produced forecasts superior to the competing model, while a †
indicates the opposite. The lack of an * or a † indicates the test was inconclusive.

Table 10. Nominal Interest-Rate Forecasts: Forecast-Encompassing Results: Significance Levels

Period

Two-Variable Models Three-Variable Models

EC–T vs. VARD EC–T vs. VARD

H0: a 5 0 H0: a 5 1 H0: a 5 0 H0: a 5 1

1 0.39 0.41 0.23 0.86
2 0.22 0.27 0.13 0.78
3 0.14 0.16 0.14 0.44
4 0.19 0.08† 0.23 0.19
8 0.17 0.01† 0.07* 0.18
16 0.43 0.00† 0.06* 0.15
24 0.01 0.00 0.34 0.00†
32 0.72 0.00† 0.67 0.00†
40 0.89 0.87 0.53 0.61

Note: See Table 9 note.
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poor forecasting ability. Instead, we see little difference between the EC–T and VARD
models.

Why does imposing the theoretical cointegrating vector assist long-run forecasts of
output but not inflation or interest rates? As noted earlier, the existence of cointegration
between interest rates and inflation is fairly controversial, particularly in light of visual
analysis of the two series and the results of cointegration tests. Little evidence supports
cointegration in the two-variable Fisher equation rate model, while Johansen tests appear
to support cointegration in the three-variable augmented Fisher equation model. In
contrast, evidence supports the presence of cointegration between output and consump-
tion. Recall that the benefits from imposing the theoretical cointegrating restrictions were
nonexistent in the two-variable Fisher equation model, but improved RMSE statistics in
the three-variable augmented Fisher equation model. In neither case did forecast-
encompassing results support the error-correction model. Cointegrating restrictions, how-
ever, clearly tended to improve output forecasts. Thus, it appears from our results that as
the likelihood that a cointegrating relationship exists between two series increases, the

Table 11. Output Forecast-Encompassing Results: Significance Levels

Period

Two-Variable Model

UNI vs. EC–T

H0: a 5 0 H0: a 5 1

1 0.95 0.00†
2 0.94 0.00†
3 0.64 0.00†
4 0.76 0.00†
8 0.60 0.00†
16 0.00 0.00
24 0.00 0.00
32 0.05 0.00
40 0.00 0.00

Note: An * indicates the univariate model was superior to the EC–T model, while a † indicates the opposite.

Table 12. Inflation-Rate Forecast-Encompassing Results: Significance Levels

Period

Two-Variable Model Three-Variable Model

UNI vs. EC–T UNI vs. EC–T

H0: a 5 0 H0: a 5 1 H0: a 5 0 H0: a 5 1

1 0.01 0.01 0.00 0.01
2 0.00* 0.12 0.00* 0.15
3 0.00* 0.65 0.00* 0.79
4 0.00* 0.55 0.00* 0.94
8 0.00* 0.10 0.00* 0.60
16 0.00 0.00 0.00* 0.32
24 0.00 0.07 0.00* 0.12
32 0.00* 0.85 0.53 0.00†
40 0.09* 0.27 0.16 0.52

See Table 11 note.
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forecasting benefits from an error-correction model also increase. This result was expected
and reveals precisely why the issue of cointegration is important to researchers modeling
long-run economic relationships.

Another prominent result of our paper is the generally strong performance of difference
models in contrast to the weak performance of levels models. The strength of VARD
models is not surprising considering that Dickey-Fuller tests indicated the presence of a
unit root in every series. Thus, first differencing of the data is appropriate.11 In most cases,
the predictive power of VARL models decreased quickly after eight quarters. Given the
popularity of this class of models in the literature, this result is surprising. It is commonly
accepted that the levels model will produce consistent coefficient estimates, although the
estimates may be inefficient if the true model is in differences and/or requires an
error-correction term. Our results indicate, however, that these models forecast poorly
out-of-sample. An explanation for this result is that the models tended to overfit the data
in-sample at the expense of out-of-sample forecasting power. Similarly, models contain-
ing the theoretical cointegrating vector (EC–T) tended to outperform those containing the
estimated cointegrated vector (EC–E). Again, this may be an example of in-sample
overfitting. Like the VARL models, the EC–E models have additional freedom to fit the
data compared to more restricted alternatives. This additional freedom, however, may
overemphasize fitting the data in-sample and, in the process, neglect determining the true
dynamic nature of the model.

How do these results aid in the choice of appropriate modeling technique? It appears
preferable to model consumption and income as cointegrated variables; doing so clearly
improves long-run forecasts of output. Our results, however, call into question the
usefulness of treating inflation and nominal interest rates as cointegrated.

A notable paper arguing in support of a long-run Fisher effect is Mishkin (1992). In his
study, Mishkin found evidence to support the conclusion that there exists a long-run Fisher
effect which is most evident when inflation and nominal interest rates both exhibit

11 Another possibility for the strength of the VARD models is that difference models may be superior when
the long-run underlying relationships are not stable. This may be of additional importance for interest-rate
models considering issues such as changes in the U.S. fiscal position, capital mobility, and risk premiums. We
thank an anonymous referee for identifying this point.

Table 13. Interest-Rate Forecast-Encompassing Results: Significance Levels

Period

Two-Variable Model Three-Variable Model

UNI vs. EC–T UNI vs. EC–T

H0: a 5 0 H0: a 5 1 H0: a 5 0 H0: a 5 1

1 0.06 0.00 0.04 0.00
2 0.07 0.01 0.04 0.01
3 0.30 0.01† 0.13 0.01†
4 0.11 0.06† 0.05 0.10
8 0.02 0.08 0.10 0.05
16 0.00* 0.94 0.00* 0.64
24 0.00* 0.81 0.01* 0.53
32 0.00 0.11 0.18 0.05†
40 0.62 0.24 0.47 0.14

See Table 11 note.
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stochastic trends. The existence of a short-run Fisher effect, where changes in the nominal
interest rate predict changes in inflation, was rejected. Furthermore, Mishkin (1992) found
that the presence of cointegration is stronger in the theoretical Fisher equation than in an
estimated equation. This finding implies that error-correction models in which the theo-
retical cointegrating vector is imposed will produce forecasts superior to models with
estimated vectors. Indeed, this is exactly what we found.

Researchers should take note, however, that our results imply that caution should be
used when describing inflation and nominal interest rates as cointegrated. Modeling
inflation and interest rates as cointegrated variables does not appear to add any additional
benefits for the purpose of modeling long-run forecasts of either variable. In fact, such a
technique appears to be inferior to methods which, if cointegration were present, should
be misspecified, most notably the two- and four-variable VARs in pure differences. It
appears that differences models are most suited to describing the future path of inflation.

IV. Conclusion
In this paper, we estimated a variety of familiar models of cointegrated variables. The
estimated models were used to create output, nominal interest rate, and inflation-rate
forecasts from 1 to 40 quarters ahead, from which root mean square error and forecast-
encompassing statistics were calculated. These statistics were then used to compare the
predictive powers of the various models, with the goal of determining the effects of
cointegrating restrictions on long-run forecasting.

Our findings provide results researchers may find useful in modeling macroeconomic
time series. A significant conclusion is that the failure to impose appropriate restrictions
may be a misspecification as significant as imposing false restrictions. Models with fewer
restrictions, such as levels models and those with estimated cointegrating restrictions
tended to possess poorer forecasting performance than their more restricted counterparts.
This is not meant to imply that theoretical restrictions unsupported by firm empirical
evidence will aid in forecasting performance. For example, some theories have qualitative
rather than quantitative predictions, or there may exist competing theories about the
magnitudes of model parameters. What is implied is that restrictions based upon solid
theoretical or empirical evidence should be closely examined before being discardeda
priori . Theoretical cointegrating restrictions appeared to aid long-run forecasts of output
in a two-variable error-correction model, but were detrimental to long-run forecasts of
nominal interest rates and inflation in a similar two-variable model. RMSE statistics reveal
that forecasts from the three-variable augmented Fisher equation system may be improved
by implementing an error-correction technique, but this result could not be substantiated
by the forecast-encompassing tests. We feel this discrepancy may be attributed to a weaker
cointegrating relationship between interest rates and inflation than that between output and
consumption, perhaps reflecting that asset-pricing relationships are more vulnerable to
shifts than are consumption patterns. It is important to note that it is unlikely that the
theoretical cointegrating restriction is a complete misspecification; if this had been the
case, this model would not be ranked second best among the two-variable nominal
interest-rates/inflation-rates models. It does appear, however, that treating inflation and
nominal interest rates as cointegrated does not provide any additional benefits from a
forecasting perspective. The opposite is true for consumption and output. Treating these
two variables as cointegrated does aid in long-run forecasting performance.
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What may be more clearly a poor choice of models is any of the levels models,
particularly the four-variable YMPR model. Contrary to our predictions, these models
performed fairly poorly. Difference models, in general, did very well, and in the case
where cointegration was weak (inflation and interest rates), produced the best forecasts,
dominating models with cointegrating restrictions. When viewed together, the two eco-
nomic relationships examined here highlight conditions under which accounting for
hypothesized long-run relationships may worsen (as with inflation and interest rates) or
improve (as with consumption and income) our ability to forecast economic variables.

This paper has benefited from comments by Jo Anna Gray, George Evans, and two anonymous referees. The
usual disclaimer applies.
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