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ASYMPTOTIC MORPHISMS AND E-THEORY

"JONATHAN SAMUEL

INTRODUCTION

The purpose of these notes is to introduce the reader with the basic facts about
asymptotic morphisms and E-theory, and show some of the recent applications of the
theory in the literature. No new results are shown here. However, the notes bring
together many of the basic facts of E-theory developed so far. The bulk of sections
1 to 5 are from Chapter II, Appendix B of Connes’ book [Co]. We have added more
detail to the proofs of the theorems stated there. Sections 3.1 and 6 come from a
paper of Dadarlat and Loring [DL1]. Section 7 comes from journal articles by various
authors, and should get the reader acquainted with the literature related to particular
applications.

This paper benefitted from discussions with E. Guentner, N. Higson, T. Loring,
A. Kumjian, and N.C. Phillips. Thanks also to my supervisor, P. Fillmore, for his
assistance and encouragement.

1. DEFORMATIONS & ASYMPTOTIC MORPHISMS

1.1. Introduction. The concrete realization of Higson’s abstract category E [Hig2],
was discovered jointly by A. Connes and N. Higson [CH], and is given by homo-
topy classes asymptotic morphisms, which can be thought of as “approximate *-
homomorphisms” of C*-algebras. One place these maps arise is in certain continuous
fields of C*-algebras. We will investigate the nature of such functions, and define
composition between them. This composition yields a bilinear map

E(A,B) x E(B,C) — E(A,C)
which extends the Kasparov product [JT].
Definition 1.1. Let A, B be C*-algebras. An asymptotic morphism is a family

(@¢)tef1,00) Of maps from A to B such that the following conditions hold.

1. For any a € A the map t — ¢;(a) is norm continuous.
2. For'any a,b € A, X\ € C the following norm limits vanish

() lim (#u(a) + Ade(b) — dula + Ab))
(b) tlifglo(ébt(ab) — ¢¢(a)de(b))
(©) 1im (¢u(a") - du(a)")
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Nothing else is-assumed about the ¢;’s. Because of the weakness of the axioms,
one must be careful. For instance, it does not follow directly from the axioms that
for a € A, the norm limit @;(aa*) — ¢+(a)¢:(a)* vanishes as ¢ goes to infinity. For this
to hold (and we want it to hold) we first need norm boundedness for ¢;(a). Luckily,
this can be proven directly from the axioms.

Lemma 1.2. For any asymptotic morphism ¢, : A — B,
lim sup ||¢+(a)]| < [|af|.
t—o0

Proof. We prove the condition first for projections. Let p be a projection in A. Then
one has for any € > 0 a T; € [1,00) such that for t > T;

lps(p) — ¢e(p)p:(p)]| < € and
|6+ (p) — o:(p)*|l < €

One concludes from the above inequalities that for small enough € there is projection
ge € B such that

6¢(p) — €l < 4e

for every t > T.. From this we must have that lim sup ||¢5t(p)|| < 1. The result will
follow for any 0 < a < 1 since one can form a projection in M, (4)

_ a —va—a?
P=1 _a—a —a ’

and then form the extension (¢2) : M2(A) — M,(B) (allow ¢; to act on each matrix
entry). One checks this extension is an asymptotic morphism, and from this we
conclude

lim sup ||¢s(a)|| < limsup ||¢7(p)|| < 1.

The result for arbitrary a € A with ||a]| < 1 follows from the fact that a can be
written as a linear combination of four positive elements. So lim sup ||¢:(a)|| < oo for
every a € A. That this bound is actually ||a|| will be explained in section 1.2 |

Remark 1.3. The argument shown above for the projections is the same argument

one uses to define a map on K-theory from an asymptotic morphism (cf. Section 1.4).
One actually defines ¢.([p]) = [¢¢] for [p] € Ko(A).

Remark 1.4. Asymptotic morphisms can be defined on any C*-algebra; however
in order to make composition work, we will need to assume our C*-algebras are
separable. We will assume this without mentioning it from now on.

The exact motivation for an asymptotic morphism comes from a continuous field
of C*-algebras defined in Dixmier (see [Dix, Chapter 10}).

Definition 1.5. Let T be a compact Hausdorff space and (A;)ier a family of C*-
algebras parameterized by T'. Suppose I' C Il;cr A; satisfies the following:
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1. T is a subspace of II;cr A; closed under the multiplication and *-operation (the
operations are taken pointwise).

2. The set I'(t) = {z(t) |z € I'} is dense in A; for all z € T".

. The map t — ||z(¢)|| is norm continuous for every z € I'.

4. Suppose y € Il;crA; is such that the map

t = lly(t) — 2@

is continuous for every z € I'. Then y € T
Then A = (Ar,T') is a continuous field of C*-algebras over T.

w

The continuous fields we are interested in are the deformations from A to B. Such
is a continuous field of C*-algebras over the interval [0, 1] whose fiber at 0 is A, and
whose fiber over (0, 1] is the constant fiber B. Suppose (A, I') is such a field. Given
any a € A there is a section a, € I' satisfying a,(0) = a, a,(t) € B for ¢t € (0,1].
Thus we can associate an asymptotic morphism ¢; : A — B via

di(a) = au(1/t).

One may ask if such a process be reversed; that is, given any asymptotic morphism

¢: : A — B, can one associate a deformation from A to B to it. The answer is a

partial yes, but we will need more machinery to see when and how this process can
be done. ~

1.2. Asymptotic vs Ordinary Morphisms. In order to further develop the theory
of asymptotic morphisms we need to make several observations. Two asymptotic
morphisms, (¢;), (¢;) : A — B, are said to be asymptotically equal if and only if for

allae A
lim (¢:(a) — ¢4(a)) =

Given an asymptotic morphlsm (d)t) from A to B we can define an ordinary morphism
¢ : A — By, by ¢(a)(t) = ¢¢(a), where B, is the quotient algebra

Gi([1, o, B)

Co([1, 0, B)
of bounded, B-valued, continuous functions modulo functions that vanish at infin-
ity. If (¢¢) and (¢);) are asymptotic morphisms from A to B, then ¢ = 9 as *-
homomorphisms if and only if (¢;) and (¢;) are asymptotlcally equal. This cor-
respondence between asymptotic and ordinary morphisms, along with Choi-Effros

lifting theorem allows one to view an asymptotic morphism as a family of *-linear
maps, at least when A is nuclear.

Lemma 1.6. Let A be nuclear and ¢ : A — Bo, a *-homomorphism. Then ¢ lifts
to a completely positive linear map ¢ : A — Cy([1,00), B). In other words, if A is
nuclear, then any asymptotic morphism (¢;) : A — B is asymptotically equal to a
family of completely positive linear maps (1) : A — B, parameterized by t € [1, 00),
satisfying (2 b) of definition 1.1.




4 JONATHAN SAMUEL

Another place where the correspondence between asymptotic and ordinary mor-
phisms can be exploited completes the proof of lemma 1.2. As ¢ is a *-homomorphism,
it is always a contraction, hence limsup ||¢:(a)|| < ||a|| for every a € A. Much of the
theory of asymptotic morphisms relies on this correspondence.

1.3. Asymptotic Morphisms Associated with Deformations. As mentioned in
the introduction, one would like to know if given an arbitrary asymptotic morphism
(¢:) : A — B, when is (¢;) associated to a deformation from A to B. The answer
mainly lies in a property of “injectivity”.
Definition 1.7. Let (¢;) : A — B be an asymptotic morphism.

1. [CH] We say that ¢ is weakly injective if the corresponding morphism q~5 A —

B, is injective.
2. [Lorl] We say that ¢ is injective if lim inf l¢+(a)|| > O for every a # 0.

Note what we call weakly injective is what [CH] call injective. We have adopted
the convention of [Lorl]. Using the ordinary morphism associated with an asymptotic
morphism, one sees that any asymptotic morphism is equivalent to the composition
of a quotient map and a weakly injective asymptotic morphism. Also, injectivity
implies weak injectivity, but not vice-versa. To see this, let A be a contractible C*-
algebra, and define ¢; to be a continuous family of homomorphisms parameterized
by [1, c0) which is the identity homomorphism when ¢ is an odd integer and the zero
homomorphism when ¢ is an even integer [Lorl].

Lemma 1.8. [Lorl] If ¢ is an injective asymptotic morphism, then lim lp:(a)]| = ||al|
— 00

for every a € A.

Proof. The proof is achieved by reducing to a discrete parameter. Let ¢, — oo be a

sequence in [1,00). Associate to (¢;) the ordinary morphlsm $: A — B where B is
the quotient

H B mod @B,
=1 i=1

and @(a) = {¢1,(a Jtnen. If liminf ||¢:(a)|] < ||a|| then ¢, can be chosen so that
ld(a)|| < |lal|. As ¢ is a* -homomorphism, it must have a non trivial kernel. From
this, we get for a non-zero z € ker(¢)

0 < limint |¢4(c) | < limnt |2, @)] = 0,

a contradiction. Hence liminf ||¢:(a)|| > |la||. However by lemma 1.2 we know the
lim sup ||¢:(a)|| < ||a||, so the lemma is proved. [ ]

The strategy for constructing a deformation from an asymptotic morphism (¢;) :
A — B is as follows [Co]. Regard (B)ie[1,00) @ the trivial fiber B and for each a € A,
¢(a) the sections of this bundle. Basically, we want to define the fiber at co as A, and
in order to have any sort of continuity at infinity, we better have ¢ injective. Regard
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[1,00] as [0, 1], and place the fiber A at 0 and B everywhere else. If ¢ is injective,
then it is weakly injective, and é is an isomorphism onto its range. Thus there is
a *-subalgebra, C C Cy((0,1), B) with A = C/Cy((0,1], B). Using the notation of
definition 1.5 one lets I' = {(¢1:(a) + f(t))coy|a € A, f € Co((0,1], B)}, and
checks that I' satisfies the axioms of a continuous field over [0, 1] with fiber A when
t = 0 and B elsewhere.

In light of this, we have the following.

Proposition 1.9. [Lorl] The following are equivalent:

1. ¢ is injective.
2. (¢¢) : A — B is associated to a deformation from A to B.
3. lim ||¢¢(a)|| = ||a]| for every a € A.

Proof. (2)=(3) and (3)=-(1) are obvious. That (1)=>(2) is true follows from the above
discussion and lemma 1.8. B

1.4. Asymptotic Morphisms and K-Theory. Given an asymptotic morphism
(¢:) : A — B one can extend to the unitizations (¢f) : AT — B* by é:(a + \) =
#:(a) + A. We saw how to extend (¢;) to matrices in the proof of lemma 1.2. In order
to see how asymptotic morphisms act on K-theory, we are going to need to know
when two asymptotic morphisms are homotopic. The definition is the obvious one,
stated below.

Definition 1.10. Two asymptotic morphisms, (¢:) : A — B, i € {0,1} are said to
be homotopic if and only if there exists an asymptotic morphism (®;) : A — B[0,1] =
C|0,1] ® B whose evaluation at 0 and 1 yields (4?) and (4}) respectively. We shall
denote the homotopy classes of asymptotic morphisms from A to B as [[4, B])].

Remark 1.11. It should be noted that if two asymptotic morphisms are asymptot-
ically equal, they are homotopic via the straight line connecting them.

Note that a homotopy of asymptotic morphisms does NOT coincide with a ho-
motopy between the corresponding *-homomorphisms because B, ® C[0,1] % (B ®
C10,1])co in general.

Given (¢:) : A — B one gets an induced map ¢, : K,(A) — K,(B) as follows.
Suppose p € M,(A) is a projection. Then for large enough ¢, ¢;(p) approximately
satisfies the projection identities (see the proof of lemma 1.2). So there is a projection
¢: € M,(B) nearby. Continuity in ¢ ensures us that all such ¢;’s are homotopic. If
one chooses a different projection in the range, say r;, the closeness of ¢;(p) to both
q: and 7; shows the map is well defined. Using the same argument for unitaries shows
the map is independent of the choice of projection from [p], and also gives us a map
between the Kj groups. The fact that ¢, is homotopy invariant is clear from the
definition of homotopy.
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We close this section by stating a theorem due to T. Loring which provides a test
for whenever an asymptotic morphism is associated to a deformation. This theorem
is useful when constructing deformations of topological spaces (cf. Section 7.4).

Theorem 1.12. [Lorl] Suppose A is a C*-algebra such that for any non-zero ideal
I < A the quotient map induces a non injective map on K-theory. Then for any
C*-algebra B and asymptotic morphism (¢:) : A — B, if ¢x : K.(A) — K.(B) is
injective then ¢ is an asymptotic morphism associated to a deformation from A to B.

2. OPERATIONS ON ASYMPTOTIC MORPHISMS

2.1. Composition of Asymptotic Morphisms. Given (¢;) : A — B and (%) :
B — C, one would like to define a composition (¢ o ¢); : A — C. Unfortunately,
a direct composition 6;(a) = 1:(¢s(a)) will not work because of a lack of uniform
continuity on an arbitrary asymptotic morphism. We illustrate with a simple counter-
example. Let f; € Co(R), t € [1,00) be an approximate unit that is 1 on [~¢,¢] and

0 on (—oo,—t — 1] U [t +1,00). One defines an asymptotic morphism ¢ : Co(R) —
C’O(R) by qbt(g) =goh Where hi(z) =z —t, v € R, and an asymptotic morphism
Pe : Co(R) — Co(R) by 4(g) = gfs. Define a map ¢, 0 ¢; : Co(R) — Co(R). One

checks directly that tlgg l|9s © de(f2) — s 0 de(f1)¥r © ¢t(f1)||oo # 0. Uh oh!

The problem in our counter-example above can be corrected by replacing 1 with
a suitable homotopic asymptotic morphism. For instance, a change in parameter
t — r(t) where r(t) : [1,00) — [1,00) is a continuous, increasing function always
yields a homotopic asymptotic morphism. In the example above, just changing 1: to
¥rx) where 7(t) = 2t suffices. In order to do this in a more general situation, we’ll
need some notion of “uniformity” on an asymptotic morphism to see exactly what

r(t) should be.

Definition 2.1. Let ¢, : A — B be an asymptotic morphism and K a subset of A.
Then ¢, is uniform on K if and only if the following conditions hold.

1. (t,a) — ¢:(a) is a continuous map, from [1,00) X K to B.
2. For every € > 0 there is a T' < oo such that for every ¢ > T the following
inequalities hold for every a, b € K.
(a) [[¢1(a) + Adi(b) — du(a+ M) < e, A€ C, A <1
(b) [|¢e(a)¢e(b) — pe(ab)|| <&
() lI#e(a) — ¢u(am)l[ <e
(d) lIge(a)ll < llall +¢

An arbitrary asymptotic morphism may not be uniform on compact subsets. How-
ever, we shall show that it is asymptotically equal to an asymptotic morphism that
is. To do so, we shall need the Bartle-Graves selection theorem. For a proof consult
[BP].
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Theorem 2.2. (Bartle-Graves) Let u : E — X be a surjective continuous linear
operator from a Fréchet space E to a Fréchet space X. Then there exists a continuous
function f : X — E such that uf =idx and f(0) = 0.

It should be noted that f might not be linear.

Proposition 2.3. Let ¢, : A — B be an asymptotic morphism. Then (¢;) is equiva-
lent to an asymptotic morphism, (1), which is uniform on compact subsets of A.

Proof. Given a ¢; : A — B, pass to g5 : A — B.. Apply the Bartle-Graves selection
theorem to the quotient map 7 : Cy([1, 00, B) — Bo to get a continuous function
0 : By — Cy([1,00[, B). Let 9(a) = o o @(a)(t). Then 9 is clearly equivalent to
¢. Condition (1) of definition 2.1 follows from the fact that ¢ and o are continuous
functions. For condition (2), we will show multiplicativity; the others are similar. So
suppose condition (2 b) of definition 2.1 does not hold. This means that there exists
a g9 > 0, and sequences {a,}, {b,}, n € N such that '

As K is compact, we can assume that a, — a, b, — b for some a,b € K. Also
we have a,b, — ab. Continuity of 1) gives us 9(a,) — ¥(a), ¥(b,) — ¥(b) and
Y(anb,) — 9(ab) in Cy([1, 00), B). Thus there is an Nj, N, € N such that

b (anb) = (@)oo < 3 Vn 2 Ny

(@b (bn) — laWp(D)loo < 3 Y2 N
(here || ||oo is the supremum norm on Cy([1,00), B)). We also have an N3 € N such
that for ¢ > Nj .
I4u(ab) — (e )] < 2
So choose an n € N with n > max{Ny, Ny, N3} then
(1) < lI9n(anbn) = ¢n(ad)|l + [|9n(ab) = a(a)thn(O)| + l|9n(a)¥n(b) — Pn(@n)tbn (bn)ll
< [[¥(anbn) — $(ab)lleo + ll¥on(ab) — n(a)bn (D)l + [1¥(a)tb(b) — ¥(an)P(bn)lloo
o o €o
<—4+ =+ —=¢€

3 3 3
a contradiction. B

To define composition, we define it on a dense subalgebra and then extend. In
particular, let A be a separable C*-algebra and (a,)S>; a countable , dense subset of
A. One defines K, to be the set of polynomials, p(a1,- - ,an,af, -+ ,ak), of degree
2n with rational coefficients no bigger in absolute value than 2". With this one gets
a sequence, (K,)%2, of compact sets in A. Let

A=) K.

n=1
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Then A is a dense *-sub-algebra of A. Moreover, we have for every n € N, K,, C Kn41,
K, + K, C Kny1, K,.K, C Kny1, and MK, C K,, YA € C, |A\| < 1. We can
now define composition of asymptotic morphisms on A4 as given by the following
proposition. '

Proposition 2.4. Let A C A be as above, and let ¢, : A — B and ¢y : B — C
be asymptotic morphisms with ¢. uniform on compact sets of A and 1; uniform on
compact sets of B. Then there exists a continuous increasing function, r : [1,00[—
[1,00[ such that the composition 0y = gz © ¢¢ 1 A — C is uniform on compact sets
for every continuous increasing function s : [1, 0o[— [1, co[, with s > 7.

Proof. Let A = UK, as above. We shall construct r(t) as follows. Choose t, such
that ¢, satisfies condition (2) of definition 2.1 on K,, for ¢ = }1, t > t,. One can
choose the t,,’s to be a non-decreasing, divergent sequence. Define

K1I7, = {¢t(a) ‘ a € Kn+1) t S tn+1}

Let r, = r(t,) be such that 1 satisfies condition (2) of definition 2.1 for K, (which
is clearly compact) for ¢ = 71—1 (once again, the r, are increasing). One then “connects
the dots” to get r(t). We must show for any s > r the composition 9),(;)@#; is uniform
on compact sets.

Let € > 0 be arbitrary and K C A compact. There exists an N € N large enough
so that K C Ky, % < ¢. Pick any t > ty. Then there exists m € N, m > N with
tmp1 >t > t, >ty Leta, b€ K C Ky. Thena, b, ab, a+Ab € Ky11 C Ky, A€
C, |A| < 1. Thus, ¢:(a), ¢+(b), ¢:(ab), d¢(a+ Ab) € K],. Moreover s(t) > r(t) > 7(tm)
so as 1 is uniform on K7,

e+ ) = v dula) ~ Mol < - < % <

as are all the other identities from condition (2) of definition 2.1. Condition (1) is
obvious. u

Given ¢; : A — B, 9 : B — C, one defines 6, : A — C by 0; = 1,4 o ¢
Then 6 : A — C., is a bounded morphism (since all C*-subalgebra morphisms are
contractions). Thus one has a continuous extension 6 : A — Cw.

Definition 2.5. With the notation from above, let 6; the associated asymptotic mor-
phism given by 6;(a) = 6(a)(t) Va € A, t € [1,00). 6 is a well defined (up to
asymptotic equality) extension of the composition 3 o ¢.

Proposition 2.6. (1) The homotopy class [0] € [[A, C]] is independent of the choice
of A and s(t). It only depends on the homotopy class of ¢ and .
(2) The composition of asymptotic morphisms is associative.

Proof. [Co] Part (1) follows from the fact that an involutive subalgebra of A gener-
ated by two o-compact sets is still o-compact. Part (2) follows using the involutive
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subalgebra B C B generated by ¢:(.A) where (¢;) is uniform on compact subsets of
A. Since B is o-compact, the conclusion follows. B

2.2. Tensor Products of Asymptotic Morphisms. It is quite straightforward to
construct tensor products of asymptotic morphisms by using the corresponding *-
homomorphism associated to it. Recall the definition of the maximal tensor product
of C*-algebras, A, B, denoted A ®, B.

Lemma 2.7. Let ¢, : A — C and ¥y : B — C be asymptotic morphisms such that
the commutator [¢:(a),¥:(b)] — 0 as t — oo. Then there exists a unique (up to
asymptotic equality) asymptotic morphism 0, : A ®y B — C such that

9t(a ® b) - ¢t((1)'l,bt(b) — 0, VYa € A, Vb € B.

Proof. Use the corresponding morphisms, q~5 and 1,7) into Cy and apply the universal
property of the maximal tensor product. B

Corollary 2.8. If ¢; : A — C and ¢y : B — D are asymptotic morphisms, then
there exists a unique (up to asymptotic equality) asymptotic morphism (¢ Qy ¥); :
A®y B — C®yD with (¢ ®y ¥)i(a ®b) — ¢d(a) ® Y(b) — 0 as t — oo.

Proof. Unitize C and Do. Now use the lemma on the asymptotic morphisms @;(a) =
#+(a) ® 1p,, and ¥4(b) = 1c,, @ (), a € A, b € B. E

Remark 2.9. It should be noted that the construction of ¢ ® v in the above proof
may destroy some ‘nice’ properties that either (¢;) or (¢;) already have. For instance,
if both (¢), (1;) are linear for each ¢, or continuous (in A and B), then it may not
be the case that (¢ ® 1); inherits the same properties. If A and B are both nuclear,
however, lemma, 1.6 still applies.

We will only be working with tensor products of nuclear C*-algebras, so we can
use the above results without explicitly stating the norm.

3. THE CATEGORY ASyMm

We will denote by Sep the category of separable C*-algebras and *-homomorphisms,
HSep will be category of separable C*-algebras and homotopy classes of *-homomorph-
isms, and Asym the category of separable C*-algebras and homotopy classes of
asymptotic morphisms. There is an obvious functor that takes an ordinary *-ho-
momorphism, ¢ : A — B, to the asymptotic morphism ¢; = ¢ for every ¢ € [1, 00).

3.1. Properties of [[—, —]]. One can view [[A, B]] as a pointed set with base point
the zero asymptotic morphism, and using composition it is clear how [[A4, —]] and
[[—,B]] can be made into covariant and contravariant functors respectively from
Asym to Asym. The set [[A4, B]] behaves very similarly in terms of the non-
commutative homotopy theory for [A, B], the morphism set for HSep, set out in
[Ros].
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First, one can stabilize [[A4, B]] to [[A, B® K]] in order to get an additive structure,
which is accomplished as follows. If ¢, 9 € [[4, B ® K]|, then one defines the sum

(O(e) =+ ([ " o D

where k : My(B ® K) — K is any *-isomorphism {unique up to homotopy). With
this structure, one can only conclude [[A, B ® K]] is an abelian moniod with identity
the 0 asymptotic morphism. We can also use the topological suspension functor
S, SB = B ® Cy((0,1)) to make [[4, SB]] a (not necessarily abelian) group. By
stabilizing both ways, and forming [[4,SB ® K]] one gets an abelian group with
bilinear composition [[4,SB ® K]] x [[SB ® K,5C ® K]] — [[A4,SC ® K]|. The
additive inverse is obtained using reflection:Co(R) — Co(R) : f — —f. The proofs of
these are the same as the proofs for [A, B]. See [Ros, Theorem 3.1], or [CH].

The covariant functor [[C,—]] also satisfies the long exact sequence induced by
an ordinary morphism p : A — B. To construct this, suppose p : A — B is a *.
homomorphism. One forms the mapping cone, C, as the pullback of p and evaluation
at 0: Cy([0,1), B) — B. Explicitly

Cp={(a,f) € A® CB|p(a) = f(0)}.

Where CB = Co([0, 1), B) & Cy([0,1)) ® B is the cone of B.
There are *-homomorphisms k : SB — C, and o : C, — A given by

k(f) = (0, f) and o(a,f) = a.
With these at our disposal, we have the following:

Theorem 3.1. Let A, B be C*-algebras, and p : A — B a *-homomorphism. Then
for any C-*-algebra, C the following sequence is exact

- 25 (10, 8G,]] % [[C, SA % [[0, 5B % [0, G]] % ([0, 4]) 25 [IC, BY).

The higher order sets in the - - - are just suspensions. The contravariant sequence
does not have such a property, and exactness for it can only be achieved by forming
a suspended stable homotopy category, in which case you get the so called Puppe
exact sequences [Ros, Section 3]. The proof of the above theorem is verbatim to [Ros,

Theorem 3.8] with [[—, —]] replacing [—, —] as the pointed sets.
If one has a short exact sequence 0 — J — A 2, B — 0, then in order to get
exactness at A for the functor [[C, —]] there should be an isomorphism between the

mapping cone C, and the ideal J. In the next section, we set out to prove this
isomorphism. There is a small price in order to achieve such a goal; we can only get
an isomorphism between SJ and SC,. So when we set out to define the category E,
you can bet there will be a suspension in it.
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3.2. Extensions and Asymptotic Morphisms. Let 0 - J — A — B — 0 be
a short exact sequence of C*-algebras. There exists, by [Vo], in the ideal J of A,
(u)tef,00) 0 < uy < 1 satisfying the following:

1. ||lusz — z|| — 0 whenever t — oo Vz € J

2. ||zus — z|| — 0 whenever t — oo Vz € J

3. ||[us, y]|| = O whenever t - coVy € A~

4. t — wu,; is norm continuous

We call (u;) a quasi-central continuous approzimate unit for J in A.
Since 0 < u; < 1, f(u:) makes sense for all f € Cy(0,1). Moreover, Va € A, one
has tlim [f(u¢),a]l = 0. To see this, note that f is the uniform limit of a sequence of

polynomials, pn, in C[0,1]. Thus [f(u¢),a] = lim [pa(u),a]. But [pa(u:),a] — 0 as
t — oo by (3) above, since every term of p, has a factor u;. This allows us to define

 a “connecting map” on arbitrary short exact sequences which will give us important
asymptotic morphisms later.

Proposition 3.2. Let 0 —» J — A & B — 0 be a short exact sequence of C*-
algebras. Let m : B — A be a continuous section of p (see Theorem 2.2), and let (uy)
be a quasi-central approzimate unit for J in A, indezed by t € [1,00). Then there
ezists an asymptotic morphism ¢, : SB — J given by

¢¢(f ® b) = f(ut)m(b).
Moreover the homotopy class €; of (¢:) is independent of the choice of m and (u:).
To prove this Proposition we need the following fact.

Lemma 3.3. Let J < A, and us a quasi-central continuous approzimate unit for J
in A. Let f € Cy(0,1) then tl_i)rglof(ut)j =0 for every j € J.

Proof. It suffices to prove the result for polynomials h. The result for arbitrary f will
follow by the Stone-Weierstrass theorem. So suppose h € Cy((0,1)) and h = 37, Azt
forn e N, A € C. We know that >;"; A\; = 0. Thus

n n n
I|Z/\iuyll = 122 Az = DA
[ =1 =1
IIZ (ueg = < D2 illlugg =l (1)
=1

Let € > 0. For each 7, 1 < 7 < n, choose t; such that ||uj — j|| < z_ZEI_Ak—I Yt > t;.
Then
luts = Il = llueg — w5+ w7 = w4 g —
< i llugg = 311+ -+ luag — 51 (2)
and since ||us] < 1 we have (2) less than Eﬁ thus (1) is less than e for every
t > max{ty, - ,tn} ]
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The proof of Proposition 3.2: With the notation from the proposition, we
must show that the above equation actually defines an asymptotic morphism. To do
so, we will show that the map (f,b) — f(us)m(b) defines an ordinary bilinear map
from Cy(0,1) X B to Jo that respects multiplication and the *-operation. This will
extend to an ordinary morphism:Cy(0,1) ® B — J by the universal property of the
maximal (=minimal) tensor product.

It is clear that linearity, multiplicativity, and the *-operation are preserved in the
first variable, since it is just evaluation at u;. To show linearity in the second variable
we must show for every a,b € A, A € C, f € Cy(0,1)

1 (ue)m(a+ Ab) = F(u)m(a) — Af (w)m(b)[| = 0, as t — oo

However, we note that the above is equal to
[1f (ue) (m(a + Ab) — m(a) — Am(b))]|

and m(a + Ab) — m(a) — Am(b) € J. So the result follows from lemma 3.3. The
other identities are similar (multiplicativity relies on the fact that u; is quasi-central
in A). So the map extends to ¢ : SB — Ju. This results in an asymptotic morphism
¢t :SB — J.

The part about homotopy classes follows, since sections are unique up to homotopy
and quasi-central approximate units are convex. ||

Remark: If the short exact sequence of proposition 3.2 splits, the proof is an imme-
diate application of lemma 2.7.

With proposition 3.2 we can associate to any class of extensions a class of asymp-
totic morphisms. In order to get a KK-class one needs to have a completely positive
lifting of p. This occurs in particular if J is nuclear. Conversely, given an asymptotic
morphism associated to a deformation from A to B, one can get an extension of SB
"by A as follows: Denote by E the C*-algebra generated by the restriction of the
continuous field to [0,1) (see [Dix, Chapter 10]), and note the following is exact

0-SB—-FEF—-A—DO0.

Here the map SB — F is the inclusion and £ — A is evaluation at 0 [CH, Co).
Proposition 3.2 is the key for achieving the isomorphism between the ideal in a
short exact sequence and the mapping cone of the surjective morphism.

3.3. The Ideal-Mapping Cone Isomorphism. Let 0 - J 5 A % B — 0 be
an exact sequence of C*-algebras. Let C), be the mapping cone of p, and o,k as in
section 3.1. One also has the natural inclusion, ¢ : J — C, given by i(y) = (y,0).
Clearly we have the identity a o ¢ = j. Although we cannot invert the morphism ¢ in
Asym we can invert its suspension Si. The inverse will be the asymptotic morphism
€; € [[SCp, SJ]] associated to the short exact sequence

0—SJ—CASC,—0
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where o(f) = (f(0), po f). It is a simple exercise to check exactness. Let ¢, €
[[SCy, SJ]] be as in Proposition 3.2 applied to the above sequence.

Lemma 3.4. The map Sjoe, : SC, — SA is homotopic to Sa in the class of
asymptotic morphisms from SC, to SA.

Proof. Let us, t € [1,00) be a quasi-central approximate unit for J in A. We will
choose hy, t € [2,00) as in Figure 1 for our quasi-central approximate unit for C(0, 1)
in C[0,1] (let hy = hy for 1 <t < 2). We let ¢, € [[SC,, SJ]] be as in proposition 3.2
represented as

¢:(f @ z) = f(he ® u)E
where € CA is such that o(Z) = z. Evaluation at a point s € (0,1) gives

f(he(s)ut)i(s).

We note that Sj is just the inclusion of SJ in SA and in the algebra SA, ¢; equivalent
to v; where

Pi(f ® 2)(s) = f(hu(s))E(s).
since u; — 1 in M(J). We now show that 1), is equivalent to 6;, where
0.(f ® z)(s) = f(je(s))Z(s)

where j; : [0,1] — [0, 1] is as in Figure 2. So we must show that

lim sup ||[f(he(s)) — f(Je(5))]Z(s)|| — O

t—=0 5¢0,1)

One notes that

sup |[(f(he(s)) — f(5e(s))Z(s)l = sup [[(f(he(s)) — f(5e(s)))Z(s)]]

0<s<1 1-3<1

< lflleo sup [|Z(s)[| — 0
1-1<1

as t — oo since Z(s) — 0 as s — 1. One can use a similar argument to show that 0,
is equivalent to

n(f ® z)(s) = (£ (4:(5)))%(0)

Only one more homotopy to go! For each ¢ define a homotopy Hy(\) = jag-1)41 (we
are just deforming j;(s) to ji(s) = s). Then 7, is homotopic to S« via the homotopy

&:(f @ 2) (A, 5) = f(H(A)(5))E(0)
since Z(0) = a(z). [ ]
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ht(s) j t(s)
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, /!
1/t 1t 1/t 1

Figure 1 Figure 2

Corollary 3.5. The map Si € [[SJ,SC,)| is an isomorphism with inverse €, €
([(SCy, S]]

Proof. After Lemma 3.4 we have (up to homotopy)
Sjoe, =Saand Sjoe, =S(aot)oe,. Combining these two gives Sioe, = id.
Conversely Sjoe, 0 Si=SaoSi=S(aoi)=S5j. Soe, 08i=1id. -

4. E-THEORY

4.1. The Additive Category E. We define the category E as follows. The objects
of E are separable C*-algebras, and the arrows E(A, B) = [[SA® K,SB ® K]] with
SA = A®Cy(R). In light of section 3.1 F(A, B) is an abelian group with identity the
zero asymptotic morphism. Using the bilinear map E(4, B) x E(B,C) — E(A,C)
given by composition of asymptotic morphisms makes E into an additive category.

It is clear how one can define a functor F' from Sep to E that takes an object
A to SA ® K and takes an ordinary *-homomorphism p to the homotopy class of
the constant asymptotic morphism, ¢; = p ® id for each ¢t € [1,00). We will denote
the image of a morphism p from Sep in E as p. We can also define covariant and
contravariant functors E(A,—) and E(—, A) : Sep — E respectively, by defining
P« = E(4,p) and p* = E(p, A) as composition of p on the left and right respectively,
for any p : B — C. Both these functors are homotopy invariant and stable by the
definition of E.

Remark 4.1. By taking suspensions in the definition of E, we ensure half-exactness
of the functors E(A, —) and E(—, A). Stabilizing with the compacts ensures matrix
stability. The above definition is “symmetric” and makes proofs for half exactness
and Bott periodicity simpler. However, for calculations, it is sometimes easier to
define F(A, B) = [[SA,SB ® K]]. Both of these groups are isomorphic, as the next
proposition shows. We state it in its full generality: that of moniods.

Proposition 4.2. For every (separable) C*-algebra A, B [[A,BQK]] Z [[AQK,B®
K]] as abelian monoids (or groups).
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Proof. Define a map F : [[A® K,B®K]] — [[4,B® K]] by F(¢) = ¢ o a. Where
a:A—> AQR®K :a— a®e, earank one projection in K. This is clearly an
abelian monoid (group) homomorphism. It is also injective. For surjectivity, suppose
¥ € [[A, BQK]]. Define ¢ € [[AQK, B®K]] by ¢ = Bo(¢®idx), where §: KQK — K
is any isomorphism (all such § are homotopic). Then ¢ o a(a) = ¢(a® e) = B(¥ ®
id)(a ® €) = B(¥(a) ® €) ~4 (a). The last homotopy follows because if B is stable,
the map b — b ® e is homotopic to a *-isomorphism. |

4.2. Bott Periodicity and Half Exactness of E(A, B). In this section, we prove
the following:

Theorem 4.3. Let 0 — J 5 A B B — 0 be ezact in Sep. Then for any separable
C*-algebra D the following are ezact:

() E(D,J) 5 B(D, A) % E(D, B)
(b) E(B,D) % E(A,D) 5 E(J, D).

That the covariant sequence, (a), is exact follows immediately from Theorem 3.1
and Corollary 3.5. We have to sweat it out a bit to prove (b). Functoriality gives
Image(p*) C ker(j*). The best we can get right now regarding the reverse inclusion
is the following:

Proposition 4.4. Let0 — J 5 A% B — 0 be ezact. Let z € [[A, D]] be such that
roj~y0. Then there is a k € [[S?B, S?D]] with S*z = k o S?p.

Proof. Using the notation of lemma 3.4 £ o j ~j 0 implies that Sz o Sao = Sz o
Sjoe€, ~p 0. Thus S(z o j) o€, ~p 0, which means that S(hoa) ~; 0. Let
(®;) : SC, — SD®C([0, 1]) be the homotopy connecting S(zoa) and 0. By restricting
®; to SB < C, we get an asymptotic morphism (k;) : S2B — SD ® C([0,1]). We
finally note that evi(k;) = evo(k:) = 0, were ev; is evaluation at 7 € [0,1]. So
(k;) : S*B — SD ® Cy(]0, 1) = S2D, is the required map. E

With the above proposition, it is clear what we must set out to do; prove Bott
Periodicity in both variables. As a result of Cuntz’s Bott Periodicity theorem, we
already have F(A, S’D) = F(A, D) [Cu]. Using this, we can get Bott periodicity in
the first variable.‘ '

Theorem 4.5. Bott Periodicity There are natural isomorphisms E(S?A, B) =
E(A, B) & E(4, S?B).

This gives us:

Corollary 4.6. The suspension functor S : E(A,B) — E(SA,SB) is an abelian
group 1somorphism for every A and B.

Corollary 4.6 and proposition 4.4 give us the rest of the proof of theorem 4.3 (b).
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4.3. The Proof of Bott Periodicity. We already mentioned we have Bott period-
icity in the functor E(D, —). We will exploit this property to get Bott periodicity for
the contravariant case. To do so, we will use the “reduced Toeplitz sequence”

O—)IC—)’]B&C’O(R) — 0
constructed by taking the classical Toeplitz extension
0-K—-7T3%C(T)—0

and denoting by 7, the kernel of the map ¢ composed with evaluation at a point
% € T (see [Cu] for more on this). Using a result from [Cu] we have that E(D, 7))
and E(D, ST;) are zero for every C*-algebra D. So by the six-term cyclic exact
sequence we have the following.

E(D,K) — 0 — E(D,Cy(R))

61 1
E(D,Cy(R?)) « 0 « E(D,SK)

Whence the connecting map 6 is an isomorphism. We wish to investigate exactly
what the connecting map is. It is constructed as follows. One checks that

0—>CO(R2)—k>Cp—a—>’]5——>0

is exact. We regard Co(R?) as Cy(]0, 1], C5(]0, 1[)), and define k(f) = (0, f). The map
« is the usual projection. Thus

E(D,Co(R?)) 55 E(D,C,) % E(D, T;) = {0}

is exact. Hence by the six-term cyclic exact sequence associated with the above exact
sequence, k, is an isomorphism of abelian groups for every D.
Since ¢ is unique, it must be the composition

E(D,Cy(R)) & B(D,0,) = E(D,K) (3)

where 771 : SC, ® K — SK ® K is the asymptotic morphism inverse to the map

i:SK®K — SC,® K (lemma 3.4 & corollary 3.5), and the ‘,” denotes composition
on the left.

Lemma 4.7. The map k : Co(R?) — C, is an isomorphism in the category E. i.e.
There is an asymptotic morphism ¢ € E(C,, Co(R?)) with pok ~y, id and ko ~y id.

Proof. Replace D by C, in (3) and observe that the map k. : E(C,, Co(R?)) —
E(C,,C,) is an isomorphism. So there is a ¢ € E(Cp, Co(R?)) with k.(¢) equal to
the identity map, id : SC, ® K — SC, ® K. But ky(¢) = k o ¢ = id, so ¢ is the left
inverse to k in E. To show that ¢ o k = id replace D by C,(R?) in (3) and note that
ku(¢ o k) = ky(id). Since k, is injective, we must have ¢ o k ~y, id. ]
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Theorem 4.8. For every C*-algebra A there is a natural isomorphism of abelian
groups ¥ : E(A, B) — E(S?A, B).

Proof. Define & : E(A, B) — E(S%A,B) by £(¢) = ¢ o (ko1)~L. It is checked that
this defines the isomorphism needed.

To show it is natural one checks for any morphism f: A — A’ in E the following
diagram commutes for any C*-algebra B:

E(A',B) 3 E(S?A',B)

fl L(S*f)*
E(A,B) 3 E(S?A,B)
where f* is just composition on the right. B

Thus, theorem 4.5 is true.

Remark 4.9. One can give an alternative proof for Bott Periodicity in E by using
the so called Heisenberg deformation [ENN]. Roughly speaking, the irreducible rep-
resentations of C*(H3), the group algebra of the Heisenberg group, form a continuous
field over R with fiber at 0 equal to Cy(R) and whose fiber elsewhere is . One can
restrict to the interval [0,1] and form a deformation from Cy(R) to K. The asymp-
totic morphism associated to this deformation yields an isomorphism (in E) between
K and Co(R?). '

Knowing how asymptotic morphisms act on K-theory, one has a map
Ko(Co(R?)) x B(Co(R?), K) — Ko(K).

By applying the asymptotic morphism associated with the Heisenberg deformation
to the generator of Ky(Co(R?)) & Z, one gets Bott Periodicity for the functor K.
This was proven in [ENN].

5. THE UNIVERSAL PROPERTY OF E

What good is a category without a universal property? In this section we will define
the universal property of the category E. Once this is defined, it links our category
to the abstract one defined in [Hig2], and also to KK-theory if the C*-algebras are
(K-)nuclear (see [Sk| for the definition of K-nuclearity).

5.1. Passing Functors to E. We begin by letting ' : Sep — Ab be a homotopy
invariant, half-exact, stable functor. Cuntz’s Bott Periodicity theorem [Cu] states F
has Bott Periodicity. Thus we have a natural isomorphism, F(4) — F(S?24A ® K).
We would like to pass F' to a functor on E. We recall that every asymptotic
morphism (¢;) : A — B corresponds to an ordinary morphism $:A— B, where

B, is the quotient %. We wish to exploit the short exact sequence

Co([l, OO), B) — Cb([l, OO), B) —l)Boo
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since the first algebra is isomorphic to the cone of B, and hence is contractible. How-
ever, neither Cy([1, 00), B) or By, are separable, so we’ll have to work with separable

subalgebras. Let ¢;(A) = By C Boo, Bs = n71(B). With these, we get a short exact
sequence of separable C*-algebras

0 — Co([1,00), B) = By 5 By — 0.

The first algebra is contractible. So F(m) is an isomorphism by the six-term cyclic
exact sequence.

Using this, we can show how to pass F' to a functor on E. To do so, let (¢;) :
SA®K — SB® K be an asymptotic morphism uniform on compact sets. Denote by
¢ry : F(A) — F(B) the following composition

F(S’A®K) " p(s(SB® K),) e

F(S(SBe K);) "5 p(s?B @ K) (4)

where ev; is evaluation at 1. We finish off the construction by applying the Bott
isomorphism and the stability isomorphism on either end to get F(—) = F(S?—®K).
One checks the following:

Proposition 5.1. The above composition maps 14 € E(A, A) to 1pa).
By letting the functor E(A, —) play the role of F' we get:

Proposition 5.2. (Compare [Higl, Theorem 3.5]) The homomorphism ¢pa,—)x =
dp« maps 14 to [[4]].

The map ¢z, is a long-winded way of composing ¢ on the left.

Theorem 5.3. (Compare [Higl, Theorem 3.7]) For every C*-algebra A and z €
F(A) there exists a unique natural transformation o : E(A,—) — F(—) with aa :
E(A, A) — F(A) satisfying aa(1a) = =.

Proof. If such o : E(A,—) — F(—) exists, one must have ap : E(A,B) — F(B)
satisfying

ap([[4]]) = ap(dr«(14)) = drs(@a(la)).

So ap is determined by a4, hence it is unique. To show existence, one defines ag(¢) =
dr«(x), where z € F(A). One has as(1l4) = = by proposition 5.1, and must show
that ap(¢) is independent of representative chosen in the homotopy class. To do
this, suppose ¢ ~p 1. By doing a similar construction in (4) to the homotopy
®,: SA® K — SB® K ® C[0,1] connecting ¢; and v, one checks that ¢r. = ¥p..
Naturality of « is straightforward, and is left as an exercise. |

Remark 5.4. It should be noted that the natural transformations a4 are necessarily
additive, thus abelian group homomorphisms. It is a straightforward exercise to check
this using functoriality and additivity [Cu, Proposition 4.1 (c)] of F.
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Of course, all this can be applied to homotopy invariant, half-exact, stable con-
travariant functors by reversing the arrows in (4). This gives us a contravariant
analogue of proposition 5.2.

Proposition 5.5. The homomorphism ¢F(—B* maps 15 to [[4]].

We can now state the universal property of E (compare [Higl, Theorem 4.5] and
[Hig2, Theorem 3.6]).

Theorem 5.6. The universal property of E: Let A be an additive category and
F : Sep — A a functor such that the bifunctor A(F (=), F(—)) is homotopy invariant,
half-ezact and stable in each variable. Then there ezists a unique additive functor
F:E— AwithF=FoE.

Proof. We define a functor F' by F(A) = F(A) on objects. On arrows we define
F : E(A —) — A(F(A),F(-)) to be the natural transformation that takes 1, €

E(A, A) to 1pa). Such a functor is unique by theorem 5.3. One checks that F
respects compositions, and is thus a functor. E

The above propositions’ proofs are almost verbatim to the proofs Higson used to
define the category KK in [Higl]; the difference being we use the machinery we built
for E rather than KK. As a result of the universal property, the category E defined
is the same as the abstract category defined in [Hig2] by N. Higson. Furthermore,
as the abstract category coincides with the category KK whenever A is (K-)nuclear
[Hig2, Theorem 3.5, E(A, B) 2 KK (A, B).

In light of the isomorphism between E and KK, one sees that E(C, A) = Ky(A) as
C is nuclear. Thus by Proposition 4.2 and [Ros, Theorem 4.1, Corollary 4.2] we have

[Co(R), SA ® K] = E(C, A) = Ky(A) = m(SA® K) 2 [C(R), SA ® K.

Here m; denotes the first homotopy functor. In particular, if A is stable, every asymp-
totic morphism from Cy(R) into SA is homotopic to a *-homomorphism. We also
have E(C,SA) = K;(A). The isomorphism takes a unitary, u, in the unitization of
A ® K and associates an ordinary morphism Co(R) - AQ K : f — f(u) via the
functional calculus [Co].

For K-nuclear A, the homology theory E(—, B) links up with the K-homology of
Kasparov [Kas] and the Brown-Douglas-Fillmore description [BDF]. In particular,
for a locally compact Hausdorff space, X

E(Cy(X),C) =[[SCo(X), SK]] 2= K°(Co(X)) = Ko(X).
We shall see in next section that for many X, the suspension is superfluous.
6. UNSUSPENDED E-THEORY

In the general definition of E-theory, one is inevitably stuck with a suspension. The
reason is twofold: first the functor [[4, —]] is not half exact, and secondly, [[4, B® K]]
in general is only an abelian monoid. One way of remedying the latter case is to ask
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for the map A - A® K : a — a ® e, where e € K is a rank 1 projection, to have
an additive inverse in [[4, A ® K]]. That is, assume the existence of an asymptotic
morphism (7;) : A — A ® K such that the map

“r [a%e ﬂt?a)]

is homotopic to the zero map. This certainly makes [[4, B®K]| into an abelian group;
the remarkable result of Dadarlat and Lor\ing is that this is a sufficient condition to
“unsuspend” E-theory.

Theorem 6.1. [DL1] If the map a — a ® e has an additive inverse in [[A, A ® K]]
then for every separable C*-algebra B

E(A,B) 2 [[4,B®K]].

Moreover, the suspension map S : [[A, B®& K]] — [[SA, SB ® K]] induces the isomor-
phism.

The proof exploits the additive inverse and the split exactness of the functor [[A, —]]
to produce isomorphisms between [[A, B ® K]] and [[S?A, S?B ® K]] = E(A, B). For
the details, see [DL1].

We will call, as in [DL1], a C*-algebra, A, homotopy symmetric if the hypothesis of
theorem 6.1 holds. There are many cases where this is true. In particular, it holds for
A = Cy(R). In fact, for any locally compact metrizable topological space X, Co(X)
is homotopy symmetric [DL1].

Up to homotopy, there are no interesting *-homomorphisms from Cy(X) to K where
X is a locally compact, finite CW-complex. As we have seen, the E-theory groups
give us another description of the K-homology of X in the sense of Brown-Douglas-
Fillmore [BDF]. As Co(X) satisfies the hypothesis of theorem 6.1 [DL1], we have

E(Co(X), K) = [[SCo(X), SK]] = [[Co(X), K]].

Yielding a description of the K-homology of X in terms of homotopy classes of asymp-
totic morphisms. We close off this section with a lemma whose proof is straightfor-
ward.

Lemma 6.2. [DL1] If A is homotopy symmetric then for any C*-algebra B, A® B
is homotopy symmetric.

7. APPLICATIONS OF E-THEORY

The final section of these notes gives a quick overview of some of the areas where
E-theory has been used.
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7.1. The Classification of AH-algebras. One of the recent classification problems
has been to determine an invariant for the so called approximately homogeneous (AH)
algebras. These algebras are inductive limits A = li_II}An where

kn
An = GB Mn,i(Co(Xn,i))-
=1
Here X, ; is a finite CW-complex. In the case X,; = {pt} for every n and %, one
gets an AF-algebra. If the X, ; are intervals, or circles, one gets AI and AT-algebras
respectively. In all these cases, K-theory has been the invariant for classification; it
stands to reason that K-theory could be the invariant for the AH-algebras.

Elliott and Gong [EG] classified the AH-algebras whose dim(X, ;) < 3, and either
(a) the inductive limit algebras were simple, or (b) K*(X,;) are torsion free (here
K*(X,;) = Ki(Co(Xy,))). The invariant was ordered K-theory. Elliott also conjec-
tured that this was the complete invariant for all such AH-algebras. In [D1], Dadarlat
showed the conjecture was true for simple AH-algebras with slow dimension growth
(so sup(dim(X,;)) < o0), and whose X, ; had torsion free K-theory. However Gong
[G] showed the conjecture was false if the X, ;’s had torsion in their K-groups.

In [G], Gong constructed two AH-algebras using the space X = RP?V.S?, the wedge
of the real projective plane and the 2-sphere, as the X, ;’s. One has dim(X) = 2,
and K°(X) = Z/2 has torsion. These two AH-algebras had isomorphic ordered K-
theory, but they were not unsuspended E-equivalent, hence could not be isomorphic.
Gong showed this was the only restriction. In other words, if two unital real rank
zero AH-algebras were unsuspended E-equivalent, then they were isomorphic. Since
finite CW-complexes are homotopy symmetric, this amounts to a KK-equivalence (or
E-equivalence).

Theorem 7.1. [G] Two unital real rank zero AH-algebras, A, B, are isomorphic if
and only if A is KK-equivalent (or E-equivalent) to B.

7.2. Dimension Drop Algebras and Mod-p K-theory. Another useful applica-
tion of the unsuspended E-theory has been on the dimension drop algebras. The non
unital one being defined as

A, ={f € Cs(0,1] ® M,(C)| f(1) is scqlar}.

The unitized A, takes a scalar value at 0 also. The unitized A, has been used by
Elliott as building blocks in AT-algebras with torsion in their K; group [Ell]. A result
from [DL1] is that A, is homotopy symmetric, and moreover

[[A,, B]] & [An, B].

So there are no ‘real’ asymptotic morphisms from a the non-unital dimension drop
into any C*-algebra. The proof uses a property called semiprojectivity, which can
be used to show that any *-homomorphism A — B, (hence asymptotic morphism)
can be lifted, for some m, to a *-homomorphism A — C([1, 00), B)/Co([1,m), B).
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This shows that any asymptotic morphism from A, to B is equivalent to a path of
*_homomorphisms, so the result follows.

The importance of such a result is it gives us a definition of the Mod-p K-theory
introduced by Cuntz and Schochet, in terms of homotopy classes of ordinary *-
homomorphisms. One defines mod-p K-theory as

K.(A;Z/p) = K.(A® D)

where D is any C*-algebra KK-equivalent to a commutative one and Ko(D) = Z/p,
Ki(D) = 0. One can use the algebra A, since Ko(A,) = 0 and K1(4,) = Z/p, as
long as one does a degree shift. Extending the concept to KK-theory [B]]

KK(A,B;Z/p)= KK(A,B® D)= KK,(A® D,B).
In particular, as C is nuclear [DL1]

Ko(B;Z/p) = KK(CB;Z/p) = E(C,B® A,) = E(C® A, B)
| 1S4y, SB ® K| = [[4,, B ® K]) = [4,, B® KJ;

giving a definition of mod-p K-theory in terms of homotopy classes of ordinary mor-
phisms. This definition of mod-p K-theory has played an important role in classifying
certain C*-algebras of real rank zero [DL2].

7.3. Classification of Purely Infinite, Simple, Unital C*-algebras. As we have
seen in the previous sections, for nuclear C*-algebras, E-theory can be used in place
of KK-theory in order to get classification results. Sometimes, it is more convenient
to use the theory of asymptotic morphisms rather than KK-elements. Nowhere is
this more apparent than in N.C. Phillips paper [Ph] on the classification of separable,
purely infinite, simple, unital C*-algebras.

In [Ph], Phillips shows that a subset of full asymptotic morphisms [[4, B ® K ®
O], denoted E4(B), is actually a group isomorphic to KK (A, B) (see [Ph] for the
definition of “full”). Here Oy, is denotes the Cuntz algebra: the universal C*-algebra
generated by countably many isometries satisfying uju; = 1, u;u; = 0 for ¢ # j and
S u;uf = 1. The heart of this proof is two results of Kirchberg.

Lemma 7.2. [Kir] (1) If A is separable, unital, and simple then Oy @ A= O,.
(2) If A is separable, unital, nuclear and simple then O, ® A= A.

With the above isomorphisms, one is able to show that F4(—) is a homotopy invari-
ant, half-exact, stable functor from separable, purely infinite, unital, nuclear, simple
C*-algebras into abelian groups, and E4(B) =2 KK (A, B) [Ph]. From this isomor-
phism, one is able to construct from a KK-equivalence of A and B, a *-isomorphism.

Theorem 7.3. [Ph] Let A and B be separable, purely z’nﬁm’te, simple, unital C*-
algebras. Suppose there is an invertible element n € KK (A, B) satisfying n X [14] =
[1g]. Then A= B.
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Here [14], [15] denote the class of the identity in K K (A, A) and KK (B, B) respec-
tively (see for example [Cu, Higl]). We will show the highlights of the proof. The
key is the notion of asymptotic unitary equivalence.

Definition 7.4. Two asymptotic morphisms (¢:), (1) are said to be asymptotically
unitary equivalent if there exists a family of unitaries (u¢)ep,00) satisfying
1. t — wu,; 1s norm continuous.

2. hmt_,oo ut(ﬁt(a)u: - 1,/)t(a) =0

Unlike approximate unitary equivalence (see [D1, Rg]), asymptotic unitary equiva-
lence determines the same class in E-theory (or KK-theory for the nuclear case). The
drawback to it is that in general, an asymptotic morphism may not be equivalent to
a reparameterization with a continuous increasing function. So the product is not
well defined on this equivalence class. The strategy used by Phillips as an attempt
to correct it was to ask for a “decoupled version”. That is, a continuous family of
unitaries u,; $,t € [1,00) such that ”

lim ||lusde(a)u;; — s(a)|| = 0, Va € A.

3,t—00

The decoupled version above cures this problem, and introduces a new one. The
asymptotic morphism ¢ : C(S') — C defined by ¢:(f) = f(exp(st)) is no longer equiv-
alent to itself. In fact, if an asymptotic morphism is asymptotically unitarily equiv-
alent to itself, then it is asymptotically unitarily equivalent to a *-homomorphism
Ph].

| }%owever, in spite of the problem, this is the condition that “works”. At least for
the case we need. The next two remarkable facts are the key ingredients to the proof
of theorem 7.3.

Lemma 7.5. [Ph] Let A be separable, nuclear, unital and simple, and let Dy be unital
and D = O ® Dy.
1. Two full asymptotic morphisms from A to K @ D are asymptotically unitarily
equivalent iff they are homotopic.
2. Any full asymptotic morphism ¢ : A — K ® D is asymptotically unitarily equiv-
alent to a *-homomorphism.

With these at our disposal, we can supply the ingredients of the proof of theorem
7.3. As E’A(D) ~ KK (A, B) there is a full asymptotic morphism ¢y : A - KQO,,®B
whose KK-class is 7. Using the above lemma, we see that ¢y is homotopic to a *-
homomorphism. By exploiting the isomorphism between B and BQ® O, and the fact
that O, is purely infinite, one can construct a *-homomorphism ¢ : A — B whose
KK-class is 7. A similar construction on 1! gives us a 9 : B — A whose KK-class is
nt.

In order to show that A is isomorphic to B, one shows that ¢ o ¢ is approximately
unitary equivalent to ¢d4 and v o ¢ is approximately unitarily equivalent to idg. The
result follows from Theorem 5.1 of [Rg]. See [Ph] for the details.
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It should be noted that E. Kirchberg independently proved the same result using
different techniques [Kir].

7.4. Deformations of Topological Spaces. In this section, we return to the rela-
tionship between asymptotic morphisms and C*-algebras deformations. In particular,

we look at deformations from Cy(X) to B ® K, where X is a locally compact space. -

Such deformations are quite common, as the next theorem shows.

Theorem 7.6. [DL3] Suppose X U {pt} is a compact orientable manifold, and B a
C*-algebra. If n : K*(X) — K.(B) is an isomorphism then there is a deformation
from Co(X) to B ® K which induces 7.

The proof is fairly straightforward, and we include it. Using the universal co-
efficient theorem (see [RS]), the isomorphism 7 is induced by a KK-equivalence in
KK(Cy(X),B). As Cp(X) is homotopy symmetric and nuclear, KK (Co(X), B) =
[[Co(X), B® K]]. Let ¢ be the asymptotic morphism inducing 7. As ¢ induces an
isomorphism on K-theory, the result follows from theorem 1.12.

A result of this theorem is that one can ‘custom make’ topological spaces whose
K-theory agrees with that of a well known C*-algebra, and form deformations. In
particular, deformations of topological spaces to non-unital dimension drop algebras
show how topological torsion can be transformed into matrical torsion. A specific
example for the dimension drop algebra A, is worked out in [DL3].

Specific cases for X being non-orientable were worked out in [Lor2]. In particular,
one can form deformations of real projective space and the Klein bottle with algebras
which are very similar to the Toeplitz algebra. Such deformations are candidates for
quantum deformations. See [Lor2| for more.

7.5. Other Areas of Interest. We have by no means covered all the areas where
E-theory and the theory asymptotic morphisms are used. In particular, E-theory
and deformations have been used by Connes and others to gain better insights into
the Baum-Connes conjecture [Co]. There are other applications of E-theory to ‘non
commutative geometry’ in Connes’ book [Co].

E-theory has also been linked up with the shape theory of C*-algebras introduced
by Effros and Kaminker and further developed by Blackadar. Much of the theory was
only developed at a formal level, and there were few explicit examples. In [D2] M.
Dadarlat showed that shape theory and E-theory actually coincided, and shape equiv-
alence amounted to E-equivalence. This gave a new perspective to many concepts in
shape theory. See [D2] for more on this topic.
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