Ex 1 Reminder: when finding \(\frac{\partial}{\partial y} [f(x, y)] = f_y(x, y) \), the differentiation is with respect to \(y \), and \(x \) is treated as a constant. (Similarly with \(x \) and \(y \) interchanged.)

Review: if \(f(x, y) = y^3 - x(y^2 - 1) \), find \(f_x(x, y) \) and \(f_y(x, y) \).
Ex 2 A particular manufacturer’s productivity happens to be modeled well by a constant elasticity of substitution production function (of which the Cobb-Douglas production function is a special case), and looks like

\[P(K, L) = 0.3 \left(0.4K^{-0.5} + 0.6L^{-0.5} \right)^{-2}, \]

for millions of units \(P \) produced at a capital investment of \(K \) million dollars and \(L \) thousand worker-hours every month. Find and interpret the value of the partial derivative \(P_K(10, 6) \), including units.

In the last lecture, we got \(P_K(10, 6) \approx 0.07404 \), but we didn’t specify the units or give the interpretation.
The second order partial derivatives of \(f(x, y) \) are written
\[
\frac{\partial^2}{\partial x^2}[f(x, y)] = f_{xx}(x, y),
\]
\[
\frac{\partial^2}{\partial x \partial y}[f(x, y)] = f_{yx}(x, y),
\]
\[
\frac{\partial^2}{\partial y \partial x}[f(x, y)] = f_{xy}(x, y),
\]
\[
\frac{\partial^2}{\partial y^2}[f(x, y)] = f_{yy}(x, y).
\]

Given a smooth function of several variables \(f \), any “mixed” partial derivatives (i.e. second-order derivatives with a combination of variables in the denominator) are equal. In other words, \(f_{xy} = f_{yx} \).

Find \(f_{xx} \) and \(f_{yy} \) for \(f(x, y) = xe^{2y^2} \)

Verify that the mixed partials for \(g(x, y) = \ln(x^2 - y^2) \) are equal.
Two commodities are:
\[\begin{array}{c} \text{substitutes} \\ \text{complementary} \end{array} \] if an increase in demand for one is associated with
\[\begin{array}{c} \text{a decrease} \\ \text{an increase} \end{array} \] in demand for the other.

Phrased in terms of calculus, let \(x \) represent the price of product 1 (in dollars per unit) and let \(y \) represent the price of product 2 (in dollars per unit). Let \(f(x, y) \) be the demand (in units) for product 1 at these prices, and let \(g(x, y) \) be the demand (in units) for product 2 at these prices. Then the products are:
\[\begin{array}{c} \text{substitutes} \\ \text{complementary} \end{array} \] if \(f_y(x, y) \) and \(g_x(x, y) \) are both
\[\begin{array}{c} > 0 \\ < 0 \end{array} \],
and otherwise are neither complementary nor substitutes.
Ex 5 Local demand for grapefruit is given by \(f(p, n) = 10 + \frac{5}{p + 2} + 3e^{0.4n} \), while demand for oranges is \(g(p, n) = 7 - \frac{4}{p + 6} - 2n \), where each demand is given in thousands of units each month at \(p \) dollars per pound for grapefruit and \(n \) dollars per pound for oranges. Are the products substitutes, complements, or neither?

Thm (Chain Rule for \(f(x, y) \)) Let \(z = f(x, y) \), where \(x \) and \(y \) are functions of \(t \). Then

\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}
\]

\(\Delta z \), for changes in \(x \) and \(y \) (\(\Delta x \) and \(\Delta y \), respectively) can be approximated by

\[
\Delta z \approx \frac{\partial z}{\partial x} \cdot \Delta x + \frac{\partial z}{\partial y} \cdot \Delta y
\]

Ex 6 Let \(z = x^2 + \ln(y) \), where \(x = 1 + t^2 \) and \(y = \sqrt{2 + t} \). Find an expression for \(\frac{dz}{dt} \).
Ex 7 (Bonus): Estimate the value of $f_x(2, 5)$ and $f_y(2, 5)$ based on the table of values for function f.

<table>
<thead>
<tr>
<th>$f(x, y)$</th>
<th>$x = 1.5$</th>
<th>$x = 2$</th>
<th>$x = 2.5$</th>
<th>$x = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 4$</td>
<td>2</td>
<td>2.6</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>$y = 4.5$</td>
<td>1.8</td>
<td>2.8</td>
<td>3.6</td>
<td>4.2</td>
</tr>
<tr>
<td>$y = 5$</td>
<td>1.5</td>
<td>2.7</td>
<td>3.7</td>
<td>4.3</td>
</tr>
<tr>
<td>$y = 5.5$</td>
<td>1.1</td>
<td>2.1</td>
<td>2.9</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Def A point (a, b) is a critical point of function $f(x, y)$ if both $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Ex 8 Find the critical points of $f(x, y) = x^2y - 4y$.
Def Given a twice differentiable function of two variables \(f(x, y) \), we say that \(f \) has a

- relative maximum
- relative minimum

at a point \((a, b)\) if \[f(a, b) \geq f(x, y) \]

for all points \((x, y)\) near \((a, b)\). We say that \((a, b)\) is a saddle point of \(f \) if it is a critical point, but not a relative extremum (that is, neither a relative maximum nor relative minimum).

Thm (The Second Partials Test) To find critical points (values of \(x \) and \(y \) for which relative extrema or saddle points of a twice differentiable function \(f \) may occur) first find all solutions \((a, b)\) to \(f_x(a, b) = 0 \) and \(f_y(a, b) = 0 \).

To classify these points compute

\[
D(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - [f_{xy}(x, y)]^2
\]

and evaluate it at each critical point \((a, b)\).

If

\[
\begin{bmatrix}
D(a, b) < 0 \\
D(a, b) > 0 \text{ and } f_{xx}(a, b) > 0 \\
D(a, b) > 0 \text{ and } f_{xx}(a, b) < 0 \\
\text{saddle point} \\
\text{relative minimum} \\
\text{relative maximum}
\end{bmatrix}
\]

at a critical point \((a, b)\), then the point is a

- saddle point
- relative minimum
- relative maximum

Ex 9 For some (twice differentiable) function \(f(x, y) \), we have critical points at \((1, 2)\), and \((-1, 4)\), with \(f_{xx}(1, 2) = 4 \), \(f_{yy}(1, 2) = -3 \), and \(f_{xy}(1, 2) = 1 \), and with \(f_{xx}(-1, 4) = 2 \), \(f_{yy}(-1, 4) = 5 \), and \(f_{xy}(-1, 4) = 3 \). Classify the critical points as relative maxima, relative minima, or saddle points.