Ex 1 Reminder: when finding \(\frac{\partial}{\partial y} [f(x, y)] = f_y(x, y) \), the differentiation is with respect to \(y \), and \(x \) is treated as a constant. (Similarly with \(x \) and \(y \) interchanged.)

Review: if \(f(x, y) = y^3 - x(y^2 - 1) \), find \(f_x(x, y) \) and \(f_y(x, y) \).

\[
f_x(x, y) = \frac{\partial}{\partial x} (y^3) - \frac{\partial}{\partial x} (x(y^2 - 1)) = 0 - (y^2 - 1) = -y^2 + 1.
\]

\[
f_y(x, y) = \frac{\partial}{\partial y} (y^3) - \frac{\partial}{\partial y} (x(y^2 - 1)) = 3y^2 - x \frac{\partial}{\partial y} (y^2 - 1) = 3y^2 - x \cdot 2y = 3y^2 - 2xy.
\]

CQ (Section 7.2, #4)

\[
f(x, y) = y^2 + y(x^3 - 5) = y^2 + (x^3 - 5)y
\]

Find \(f_y(2, 1) \)

\[
f_y(x, y) = 2y + x^3 - 5
\]

So \(f_y(2, 1) = 2 \cdot 1 + 2^3 - 5 = 2 + 8 - 5 = 5 \).
Ex 2 A particular manufacturer’s productivity happens to be modeled well by a constant elasticity of substitution production function (of which the Cobb-Douglas production function is a special case), and looks like

\[P(K, L) = 0.3 \left(0.4K^{-0.5} + 0.6L^{-0.5} \right)^{-2}, \]

for millions of units \(P \) produced at a capital investment of \(K \) million dollars and \(L \) thousand worker-hours every month. Find and interpret the value of the partial derivative \(P_K(10, 6) \), including units.

In the last lecture, we got \(P_K(10, 6) \approx 0.07404 \), but we didn’t specify the units or give the interpretation.

\[\frac{\partial P}{\partial K} \text{ has units} \quad \frac{\text{units of } P}{\text{units of } K} \]

Here,

\[\frac{\text{millions of } P}{\text{units/mth}} = \frac{\text{units/}}{\text{millions of } $/\text{mth}} = \text{Units per } $ \]

\[\text{units of } \frac{\partial P}{\partial L} = \text{1000s of } \frac{\text{units per month}}{\text{worker-hour}}. \]

Interpretation of \(\frac{\partial P}{\partial K}(10, 6) \approx 0.07404 \):

At 10 million $ of capital and 6 thousand worker-hours/month, each additional $ of capital per month gives about 0.07404 additional units of production per month.

This is the marginal productivity of capital.

\[\left[\frac{\partial P}{\partial L} \right] \text{ is the marginal productivity of labor.} \]
Guide for Section 7.2: Partial Derivatives (part 2)

Def The second order partial derivatives of \(f(x, y) \) are written

\[
\begin{align*}
\frac{\partial^2}{\partial x^2}[f(x, y)] &= f_{xx}(x, y), \\
\frac{\partial^2}{\partial y^2}[f(x, y)] &= f_{yy}(x, y), \\
\frac{\partial^2}{\partial x \partial y}[f(x, y)] &= f_{yx}(x, y), \\
\frac{\partial^2}{\partial y \partial x}[f(x, y)] &= f_{xy}(x, y),
\end{align*}
\]

and

\[
\frac{\partial^2}{\partial y \partial x}[f(x, y)] = f_{xy}(x, y),
\]

Thm Given a smooth function of several variables \(f \), any “mixed” partial derivatives (i.e. second-order derivatives with a combination of variables in the denominator) are equal. In other words, \(f_{xy} = f_{yx} \).

Ex 3 Find \(f_{xx} \) and \(f_{yy} \) for \(f(x, y) = xe^{2y^2} \).

First:

\[
f_x(x, y) = e^{2y^2}. \quad \text{Comb.}
\]

\[
f_{xx}(x, y) = \frac{\partial}{\partial x} (e^{2y^2}) = 0
\]

Now \(x \) is constant.

\[
f_y(x, y) = xe^{2y^2}. \quad \text{Comb.}
\]

\[
f_{yy}(x, y) = 4x \left[\frac{\partial}{\partial y} (4y e^{2y^2}) \right] = 4x \left[4y e^{2y^2} + y - 4y e^{2y^2} \right]
\]

Ex 4 Verify that the mixed partials for \(g(x, y) = \ln(x^2 - y^2) \) are equal.

Need \(g_{xy}(x, y) \) and \(g_{yx}(x, y) \)

Dif. with respect to \(x \) first

\[
g_x(x, y) = \frac{1}{x^2 - y^2} \cdot \frac{\partial}{\partial x} (x^2 - y^2) = \frac{2x}{x^2 - y^2}
\]

\[
g_{xy}(x, y) = \frac{\partial}{\partial y} (g_x(x, y)) = \frac{\partial}{\partial y} \left(\frac{2x}{x^2 - y^2} \right) = \frac{\partial}{\partial y} \left(2x(x^2 - y^2)^{-1} \right)
\]

\[= 2x \left(-1\right)(x^2 - y^2)^{-2} \frac{\partial}{\partial y} (x^2 - y^2) = 4xy(x^2 - y^2)^{-2}
\]

\[= 4x \left(e^{2y^2} + 4y^2 e^{2y^2} \right)
\]
Guide for Section 7.2: Partial Derivatives (part 2)

\[g(x,y) = \ln(x^2 - y^2) \]

New diff. with respect to \(y \) first:

\[g_y(x,y) = \frac{1}{x^2 - y^2} \cdot (-2y) = -2y (x^2 - y^2)^{-1} \]

\[g_{yx}(x,y) = \frac{2}{x} (-2y (x^2 - y^2)^{-1}) = -2y \frac{2}{x} \left((x^2 - y^2)^{-1} \right) \]

\[= -2y \left(-1 \right) (x^2 - y^2)^{-2} (2x) = 4xy(x^2 - y^2)^{-2} \]

Yes, they are the same.

CQ (Section 7.2, #4)

\[\#1 \mbox{ on screen.} \]

\[
\begin{align*}
 g(x,t) &= t x^2 \\
 g_{xt}(x,y) &= \frac{c}{\partial t} \left(\frac{2}{\partial x} \left(t x^2 \right) \right) = \frac{c}{\partial t} (t - 2x) \\
 &= 2x.
\end{align*}
\]

Def

Two commodities are:

- substitutes
- complementary

if an increase in demand for one is associated with a decrease an increase in demand for the other.

Phrased in terms of calculus, let \(x \) represent the price of product 1 (in dollars per unit) and let \(y \) represent the price of product 2 (in dollars per unit). Let \(f(x,y) \) be the demand (in units) for product 1 at these prices, and let \(g(x,y) \) be the demand (in units) for product 2 at these prices. Then the products are:

- substitutes
- complementary

if \(f_y(x,y) \) and \(g_x(x,y) \) are both \(> 0 \) and \(< 0 \), and otherwise are neither complementary nor substitutes.

CQ (Section 7.2, #5)

If price of bread increases, then quality of bread sold goes down, so demand for butter goes down. Demand for butter is \(D(v,u) \)

We are talking about \(D_r (v,u) \), and it should be negative.
Ex 5 Local demand for grapefruit is given by \(f(p, n) = 10 + \frac{5}{p+2} + 3e^{0.4n} \), while demand for oranges is \(g(p, n) = 7 - \frac{4}{p+6} - 2n \), where each demand is given in thousands of units each month at \(p \) dollars per pound for grapefruit and \(n \) dollars per pound for oranges. Are the products substitutes, complements, or neither?

\[
\begin{align*}
\text{Need} & \quad f_n(p, n) = \frac{\partial}{\partial n} \left(10 + \frac{5}{p+2} + 3e^{0.4n} \right) \\
& \quad = 0 + 0 + 3 \cdot (0.4) e^{0.4n} = 1.2e^{0.4n}
\end{align*}
\]

and

\[
\begin{align*}
g_p(p, n) &= \frac{\partial}{\partial p} \left(7 - \frac{4}{p+6} - 2n \right) \\
& = \frac{-4}{(p+6)^2}
\end{align*}
\]

Both are positive, so substitute.

\[
z = f(x(t), y(t))
\]

Thm (Chain Rule for \(f(x, y) \)) Let \(z = f(x, y) \), where \(x \) and \(y \) are functions of \(t \). Then

\[
\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}
\]

\(\Delta z \), for changes in \(x \) and \(y \) (\(\Delta x \) and \(\Delta y \), respectively) can be approximated by

\[
\Delta z \approx \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y
\]

Ex 6 Let \(z = x^2 + \ln(y) \), where \(x = 1 + t^2 \) and \(y = \sqrt{2+t} \). Find an expression for \(\frac{dz}{dt} \):

\[
\frac{dz}{dt} = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)
\]

Continued on page 5-1.
\[
\frac{dz}{dt} = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)
\]
\[
\leq 2t + \frac{1}{\gamma(t)} \cdot y'(t)
\]
\[
= 2(1+t^2) \cdot 2t + \frac{1}{\sqrt{2+t}} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{2+t}}
\]
\[
= 4t(1+t^2) + \frac{1}{2(2+t)}
\]

Given problem:

\[z = f(x, y) = x^2 + \ln(y)\]

\[x(t) = 1+t^2, \quad y(t) = \sqrt{2+t}\]

Find \(\frac{dz}{dt} \) using multivariable chain rule.