Guide for Section 7.3: Optimization for Two Variables, part 2

Ex 4 (Problem 45 in Section 7.3 of the book.) Alternative forms of a gene are called *alleles.* Three alleles, designated A, B, and O, determine the four human blood types A, B, O, and AB. Suppose that \(p \), \(q \), and \(r \) are the proportions of A, B, and O in a particular population, so that \(p + q + r = 1 \). Then, according to the Hardy-Weinberg law in genetics, the proportion of individuals in the population who carry two different alleles is \(P = 2pq + 2pr + 2qr \). What is the largest possible value of \(P \)?

(Alternatively, assume that the relative maximum is a global maximum.)

(Note: The combinations AO and BO give blood types A and B.)

\[
\begin{align*}
 r &= 1 - p - q \\
 P(p, q) &= 2pq + 2p(1-p-q) + 2q(1-p-q) \\
 &= 2p + 2q - 2p^2 - 2pq + 2q - 2rp - 2rq \\
 &= 2p + 2q - 2p^2 - 2pq - 2q^2. \\
 \frac{\partial P}{\partial p} &= 2 - 4p - 2q = 0 \\
 \frac{\partial P}{\partial q} &= 2 - 2p - 4q = 0 \\
\end{align*}
\]

Solve: \(2 - 4p - 2q = 0 \)
\[2 - 2p - 4q = 0 \]

Put \(\dot{q} = 1 - 2p - q = 0 \)
\[
\begin{align*}
 q &= 1 - 2p \\
 2p - 2q &= 0 \\
\end{align*}
\]

Sub: \(2pq - 2(1-2p) = 0 \)
\[
\begin{align*}
 -1 + 3p &= 0 \\
 p &= \frac{1}{3} \quad \text{Put in last eqn:} \\
 1 - 2(\frac{1}{3}) - q &= 0, \quad \text{so} \quad q = \frac{1}{3}. \\
\end{align*}
\]

Need to check what kind of critical point.

\[
\begin{align*}
 P_{pp}(\frac{1}{3}, \frac{1}{3}) &= -4 \\
 P_{pq}(\frac{1}{3}, \frac{1}{3}) &= -4 \\
 P_{qq}(\frac{1}{3}, \frac{1}{3}) &= -2. \\
\end{align*}
\]

So, rel min \(\frac{1}{3}, \frac{1}{3} \), since \(P_{pp}(\frac{1}{3}, \frac{1}{3}) < 0 \), has a rel. max.

\[
D(\frac{1}{3}, \frac{1}{3}) = (-4)(-4) - (-2)^2 = 12
\]

So rel min \(\frac{1}{3}, \frac{1}{3} \), since \(P_{pp}(\frac{1}{3}, \frac{1}{3}) < 0 \), has a rel. max.
If asked for the largest possible value:

(use $r = 1 - \frac{1}{3} - \frac{1}{3} = \frac{1}{3}$).

\[P \left(\frac{1}{3}, \frac{1}{3} \right) = 2 \left(\frac{1}{3} \right) \left(\frac{1}{3} \right) - 2 \left(\frac{1}{3} \right) \left(\frac{1}{3} \right) + 2 \left(\frac{1}{3} \right) \left(\frac{1}{3} \right) = \frac{0}{3}. \]