Instructions:

Check your answers. Take the time before you turn in your test to make sure you have read the directions correctly and in their entirety, that all your work shown is correct, and that you have clearly stated your answer (by boxing or circling it where appropriate).

Pace yourself. If you’re stuck on a problem, move on and come back to it later. Don’t risk forcing yourself to give partial answers if you run out of time near the end of the test. Do the easy ones first. The exam is worth 33 points. That means you should spend around 1.5 minutes for each point the problem is worth in order to complete the exam in time.

Partial credit is possible. Any fill blank or multiple choice items with space left for “work shown (partial credit possible)” can receive up to half credit for the work shown. Partial credit is always available on free response questions. In the limited space provided, be careful to only include what you want your instructors to evaluate.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points Received</th>
<th>Points Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

Bonus Codes:
Multiple Choice and Fill Blank Choose the best answer from among the multiple choices given. In each answer blank, write the correct numerical, symbolic expression or phrase (e.g. “DNE”). Numerical answers can be expressed exactly or rounded to three decimal places.

1. Let \(z = N(x, y) = e^{-4xy^2} \).

 (a) Fill Blank: Compute \(N_{yx} \).

 \[
 N_{yx} = \frac{1}{4}
 \]

 (b) Multiple Choice: Sketch the graph of the trace \(y = -2 \) for \(N \).

 (i) (ii) (iii) (iv)

2. Fill Blank: Let \(z = f(x, y) = \ln(4x^2 - 5y^2) \) and assume additionally that \(x = 2 - 7t - t^2 \), while \(y = 3t \) for some variable \(t \). Compute \(\frac{dz}{dt} \). Your answer may contain \(x, y, \) and \(t \).

 \[
 \frac{dz}{dt} = \frac{1}{4}
 \]

3. Fill Blank: Write the three equations required to find the maximum value of \(f(x, y) = 2y^3 - x^2y^2 \) subject to the constraint \(4y - 3x = 10 \), according to the method of Lagrange multipliers.

 \[
 \text{Equation: } \frac{8y^2 - 5x}{y - 4x}
 \]

4. Multiple Choice: Consider the function \(z = f(x, y) = \frac{8y^2 - 5x}{y - 4x} \). The domain of \(f \) is all points ...

 (a) ... in the \(xy \)-plane.
 (b) ... in the \(xy \)-plane not on \(x = 0 \) nor \(y = 0 \).
 (c) ... in the \(xy \)-plane not on \(x = 1.6y^2 \).
 (d) ... in the \(xy \)-plane above \(y = 4x \).
 (e) ... in the \(xy \)-plane on \(y = 4x \).
 (f) ... in the \(xy \)-plane not on \(y = 4x \).
5. **Fill Blank:** Consider the savings function $S(x, y)$ dollars saved when an individual has an annual income of x and their spouse has an annual income of y (each in thousands of dollars). Currently, the two people together make 110 thousand and have a maximum savings when the Lagrange multiplier is equal to -0.1. By approximately how much would the maximum savings change if the two people made 3 thousand dollars more annually?

\[\text{Change: } \$ \]

Work shown (partial credit possible)

6. **Multiple Choice:** Suppose that for a twice-differentiable function $f(x, y)$ we know that $f_{xx}(5, 9) = 8$ and $f_{yy}(5, 9) = 4.5$ and $f_{xy}(5, 9) > 0$. Then f will have a saddle point at $(5, 9)$ as long as ...

\[\begin{array}{ll}
(a) & f_{xy}(5, 9) > 36. \\
(b) & f_{xy}(5, 9) > 6. \\
(c) & f_{xy}(5, 9) > 49. \\
(d) & \text{nothing else, } f_{xy}(5, 9) > 0 \text{ is sufficient.} \\
(e) & \text{nothing, } f \text{ cannot have a saddle point at } (5, 9). \\
\end{array} \]

Work shown (partial credit possible)

7. **Multiple Choice and Fill Blank:** Let t be the time (in weeks) after the beginning of the year and x be the annual demand (in thousands of boxes) for a product being kept in a warehouse. The remaining inventory in the warehouse is given by $I(x, t) = xe^{-0.2t}$ thousand boxes. Construct a sentence interpreting the value of $I_x(4, 10)$ in the applied context using the four parts below.

\[\begin{array}{ll}
\text{(a) Choose the first part.} & \text{(b) Choose the second part.} \\
\quad \text{i. The annual demand is...} & \quad \text{i. ... changing at this rate ...} \\
\quad \text{ii. The time is...} & \quad \text{ii. ... maximized at this value ...} \\
\quad \text{iii. The remaining inventory is...} & \quad \text{iii. ... minimized at this value ...} \\
\quad & \quad \text{iv. ... equal to this value ...} \\
\text{(c) Write numbers for the third part.} & \text{(d) Choose the final part.} \\
\quad \text{“... after ______ weeks,} & \quad \text{i. ... while demand changes and inventory remains constant.} \\
\quad \text{and with annual demand of} & \quad \text{ii. ... while demand changes and time remains constant.} \\
\quad \text{_______ boxes ... ”} & \quad \text{iii. ... while time changes and inventory remains constant.} \\
\quad & \quad \text{iv. ... while time changes and demand remains constant.} \\
\end{array} \]
8. One company makes two products, where the price of the first product is n (in rupees) and the price of a second product is p (also in rupees). Monthly demand for the first product is $f(n, p) = 50 - 6n + 4p$ items while monthly demand for the second product is $g(n, p) = 80 + 5n - 6p$ items.

(a) Are the two products substitutes, complementary, or neither? Show work to justify your answer.

/ 2

(b) What prices maximize the total revenue from the production and sale of both of these items? Use calculus to verify that the value is a maximum.

/ 9