187,188c187,188 < It follows that $g$ is concave up on $(- \infty, \, - 2)$, < concave down on $( - 2, 4)$, and concave up on $(4, \infty)$. --- > It follows that $g$ is concave up on $(- \infty, \, 0)$, > concave down on $(0, 4)$, and concave up on $(4, \infty)$. 300,301c300,308 < This limit can be evaluated by substituting $x = 0$, < and the result is~$k$. --- > The last limit can be evaluated by substituting $x = 0$. > That is, > \[ > \lim_{x \to 0} \frac{e^{k \sin (x)} - 1}{\sin (x)} > = \lim_{x \to 0} \frac{e^{k \sin (x)} \cdot k \cos (x)}{\cos (x)} > = \frac{e^{k \sin (0)} \cdot k \cos (0)}{\cos (0)} > = \frac{e^{0} \cdot k \cdot1}{1} > = k. > \]