1. Find all real solutions to the equation $\frac{6}{x} + \frac{7}{x^2} = 1$. If no real solution exists, write "no solution".

2. Simplify the following expression as much as possible. If no simplification is possible, write "not possible": $\frac{x^3 + 7x}{x^3 + 2x}$

3. Simplify completely (for x > 0): $\frac{(2\sqrt{x})^3}{(2x^{3/2})^2}$

4. Multiply out: $(y-5)(y^2+3y-2)$.

5. Let f(x) = 7 - x. Evaluate the expression f(2 - x) - f(x), and simplify it as much as possible.

6. Find all real numbers a such that |a+2| = -a - 2.

7. Find all real solutions to the equation $3y^{-3} = 0$. If no real solution exists, write "no solution".

8. Find all real solutions to the equation $4e^{-3x} + 11 = 3$. If no real solution exists, write "no solution".

9.	Write as a	single f	fraction,	and	simplify a	,	as possible:	2	1
						as much		$\overline{p+4}$ –	$\overline{p+5}$

10. The curve in the graph below (at the left) is the graph of the function $y = 2x^2$. Find the **exact** values of **both** coordinates of **all** points at which this curve intersects the horizontal line.

