WORKSHEET: DERIVATIVES FROM THE DEFINITION

Names and student IDs: _____

Recall: if f is a function defined on an open interval containing a, then the derivative of f at a is f(a+b) = f(a)

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

if this limit exists.

An alternate formulation is: the derivative of f at a is

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

if this limit exists.

1. Let $k(x) = x^2$ for all real numbers x. Let a be an arbitrary real number. Find k'(a) directly from the definition. You should get k'(a) = 2a.

2. If $k(x) = x^2$ for all real numbers x, then for all real numbers x, we have k'(x) =____.

3. Expand the expression $(x+h)^3$.

4. Let $l(x) = x^3$ for all real numbers x. Let a be an arbitrary real number. Find l'(x) directly from the definition. You should get $l'(x) = 3x^2$.

Continued on back or next page.

Date: 13 January 2024.

5. For a nonnegative integer n, let $P_n(x)$ be the function $P_n(x) = x^n$ for all real numbers x.

(Take $P_0(0) = 1$.) You have seen $P'_0(x)$, $P'_1(x)$, $P'_2(x)$, and $P'_3(x)$. What do you think $P'_4(x)$ is? What do you think $P'_n(x)$ is?