
MATH 251 (PHILLIPS): SOLUTIONS TO WRITTEN HOMEWORK 4

This homework sheet is due in class on Tuesday 28 January 2025 (week 3), in class. Write answers on a
separate piece of 8.5 by 11 inch paper, well organized and well labelled, with each solution starting on the left
margin of the page.

All the requirements in the sheet on general instructions for homework apply. In particular, show your work
(unlike WeBWorK), give exact answers (not decimal approximations), and use correct notation. (See the
course web pages on notation.) Some of the grade will be based on correctness of notation in the work shown.

Point values as indicated, total 50 points.

1. (10 points.) Find the derivative of the function R(t) = 4at3 − t2 cos(t) − π2. (a is a constant .)

Solution: The product rule says

d

dt

(
t2 cos(t)

)
= 2t cos(t) + t2(− sin(t)) = 2t cos(t) − t2 sin(t).

Also,
d

dt

(
π2
)

= 0 because π2 is a constant. Using the power and multiplication by a constant rules on the first

term, this gives

R′(t) = 12at3 − [2t cos(t) − t2 sin(t)] − 0 = 12at3 − 2t cos(t) + t2 sin(t).

2. (10 points.) The picture below shows the graph of a function y = f(x) and the tangent line to the graph at
x = 2.
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Let g be the function g(x) =
f(x)

x2 + 7
. Find g′(2).

Solution: FOR WRONG PROBLEM!
By the quotient rule, we have

g′(x) =
f ′(x)(x2 + 7) − f(x) d

dx

(
x2 + 7

)
(x2 + 7)2

=
(x2 + 7)f ′(x) − 2xf(x)

(x2 + 7)2
.
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Therefore

g′(2) =
(22 + 7)f ′(2) − 2 · 2f(2)

(22 + 7)2
=

11f ′(2) − 4f(2)

112
.

We can read off f(2) = −1 from the graph.
We now need f ′(2). Examining the graph, we see that the tangent line goes through the points (2, −1) and

(0, 3). Therefore its slope is f ′(2) = 3−(−1)
0−2 = −2.

Now substitute:

g′(2) =
11f ′(2) − 4f(2)

112
=

11(−2) − 4(−1)

121
= − 18

121
.

For reference, the function in the graph is f(x) = 1 − 1
2x

2.

3. (10 points.) Let f and g be functions which are differentiable at −2 and which satisfy

f(−2) = −5, f ′(−2) = −3, g(−2) = 4, and g′(−2) = 2.

Let w(x) = x− f(x)g(x) for all x. Find w′(−2).

Solution: Using the product rule on the second part, we get:

w′(x) = 1 − [f ′(x)g(x) + f(x)g′(x)] = 1 − f ′(x)g(x) − f(x)g′(x).

This gives

w′(−2) = 1 − f ′(−2)g(−2) − f(−2)g′(−2) = 1 − (−5)(4) − (−3)(2) = 27.

4. (20 points.) A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible volume of
such a cylinder.

Be sure to verify that your maximum or minimum really is what you claim it is.

Solution: Note: There is no picture in this file.
We are supposed to maximize the volume of the cylinder. Let’s call it V .
Let’s decide that the cylinder is supposed to be inscribed vertically, that is, with the flat (circular) ends at

the top and bottom. Further let x be the distance from the center of the sphere to the top of the cylinder. This
is half the height of the cylinder. Let y be the radius of the cylinder. Then V is the height 2x multiplied by
the area πy2 of the base, that is, V = 2x · πy2 = 2πxy2.

We must relate x and y. The Pythagorean Theorem gives x2 + y2 = r2. Since y2 already appears in the
formula above, but y by itself does not, the easiest way to proceed is:

y2 = r2 − x2

V = 2πxy2 = 2πx(r2 − x2)

Rewriting it for easy differentiation:

V (x) = 2πr2x− 2πx3.

Now we consider the allowed values of x. Clearly x ≥ 0. Also x ≤ r, because otherwise the cylinder would
stick outside the sphere. Any value of x in the interval [0, r] gives a reasonable value of y, and therefore an
inscribed cylinder, so these are the only restrictions. (Note: We allow the “degenerate” cases x = 0, and x = r,
so as to be able to use the shortcut for maximization on closed bounded intervals.)

Our problem is now to find the maximum value of V (x) = 2πr2x−2πx3 for x in the interval [0, r]. We search
for critical numbers. We have V ′(x) = 2πr2 − 6πx2 (remember that r is a constant!), so we solve:

2πr2 − 6πx2 = 0

r2 − 3x2 = 0

x2 = 1
3r

2

x = ±
√

1
3r

2 = ±
√

1
3 · r.

We reject the value x = −
√

1
3 · r, because it is not in the interval [0, r]. This leaves one critical number, namely

x =
√

1
3 · r.



Since we are maximizing a continuous function on a closed bounded interval, we can simply compare function
values at the critical numbers and endpoints. We compare (using the formula V (x) = 2πx(r2 − x2), because it
is easier to evaluate):

V (0) = 0, V

(√
1
3 · r

)
= 2π

√
1
3 · r

(
r2 − 1

3r
2
)

= 2π
√

1
3

(
1 − 1

3

)
r3 = 2π 2

3

√
1
3 · r3,

and
V (r) = 2πr(r2 − r2) = 0.

Clearly V
(√

1
3 · r

)
is the largest. Thus, the maximum volume is V

(√
1
3 · r

)
= 2π 2

3

√
1
3 · r3. (Units are not

given, so we can’t put them in. You can tell from this that the problem was invented by a mathematician, not
a physicist.) This completes the (most direct) solution of the problem.

Te following solutions use methods we have not yet discussed, and are therefore not appropriate for this
assignment. The are included for reference from later in the course.

Alternate solutions: It is also possible to use either the first or second derivative test here. Both of these
will work on the open interval (0, r), so for them it is not necessary to include the degenerate cases x = 0 and

x = r. For both, we start at the point above where we found that x =
√

1
3 · r is the only number in our interval

with V ′(x) = 0.
First derivative method: We write

V ′(x) = 2πr2 − 6πx2 = 2π(r2 − 3x2).

(The factorization is to make it easier to determine whether V ′ is positive or negative.) Then V ′(x) > 0 for

0 ≤ x <
√

1
3 · r, and V ′(x) < 0 for x >

√
1
3 · r. This shows that V (x) is increasing for 0 ≤ x <

√
1
3 · r and

decreasing for x >
√

1
3 · r. So V

(√
1
3 · r

)
must be the largest value of V (x) for x in [0, r].

Second derivative method: We know V ′(x) = 2πr2−6πx2. So V ′′(x) = −12πx. This is negative on the entire
interval [0, r], so V (x) is concave down there, and any number x with V ′(x) = 0 must give a global maximum.

Finally, let’s see what happens if we solve for x instead of for y2. From x2 + y2 = r2, we get x =
√
r2 − y2.

(Note that x ≥ 0, so we take the positive root.) Then

V = 2πxy2 = 2π
√
r2 − y2 · y2.

Writing it as a function for differentiation:

Ṽ (y) = 2πy2
√
r2 − y2.

(Notice that this is a different function than the one called V above.) The restriction on y is, it turns out, the
same as on x above: y must be in the interval [0, r] (or (0, r) if we exclude degenerate cases). We can maximize

Ṽ (y) for y in the interval [0, r] by exactly the same methods as used above, but it will be messier. (When

differentiating, remember that r is a constant!) It will turn out that Ṽ (y) is maximized when y =
√

2
3 · r, which

gives exactly the same cylinder as we got before.

There is a trick that can be used: since Ṽ (y) ≥ 0, it will be maximized exactly when(
Ṽ (y)

)2
= 4π2(r2 − y2)y4 = 4π2r2y4 − 4π2y6

is maximized. This expression is much easier to differentiate, but is still a little messier than V (x) from the
first approach.


