WORKSHEET: IMPLICIT DIFFERENTIATION 2

Names and student IDs:

Recall the chain rule: If g is differentiable at x and f is differentiable at g(x), and if h(x) = f(g(x)) for all x (in a suitable open interval), then

$$h'(x) = f'(g(x)) \cdot g'(x).$$

Further reminders: in implicit differentiation problems, y (or some other variable) is implicitly a function of x (or some other variable). So, for example, $\frac{d}{dx}(y^3) = 3y^2\frac{dy}{dx}$, not zero (and certainly not $3g^2$ —that is **never** right).

Also, $\frac{dy}{dx}(x^2y+y^6)$ means the product of $\frac{dy}{dx}$ and x^2y+y^6 . It does **not** mean the derivative of x^2y+y^6 with respect to x. That is correctly written $\frac{d}{dx}(x^2y+y^6)$. Getting this wrong is serious error.

You will use implicit differentiation to find $\frac{dy}{dx}$ when $y^7 = \tan(3x - y) + \pi^3$. You **must** solve for $\frac{dy}{dx}$.

1. Rewrite the formula with y written as a function of x.

2. There are two places you will need the chain rule. What are they?

3. Carry out the implicit differentiation. (You must solve for $\frac{dy}{dx}$.)

Date: 7 February 2024.