WORKSHEET: INFINITE LIMITS

Names and student IDs:

Recall: We say $\lim_{x\to a} f(x) = \infty$ (even though ∞ is not a number) if one can force f(x) to be as large as one wants by requiring that x be close enough to a. In particular, f has a vertical asymptote at x=a, near which the graph goes up on both sides. Example: $\lim_{x\to o} \frac{1}{x^2} = \infty$.

Plot this on your calculator to see, moving the screen around to show the parts of the function near x = 0.

Also look at the following table of values. You see that when x is close to zero (with either x > 0 or x < 0), then x^2 is positive and close to zero, and $\frac{1}{x^2}$ is ;positive and large.

x^{ω}		
x	x^2	$\frac{1}{x^2}$
1	1	1
0.1	0.01	100
0.01	0.0001	10,000
0.0001	0.00000001	100,000,000
-1	1	1
-0.1	0.01	100
-0.01	0.0001	10,000
-0.0001	0.00000001	100,000,000

Similar considerations give meanings to $\lim_{x\to a} f(x) = -\infty$, $\lim_{x\to a^-} f(x) = \pm \infty$, $\lim_{x\to \infty} f(x) = \pm \infty$, etc.

1. What are the following? Try computing some values if needed. After you have answered, look at calculator graphs to check.

$$\lim_{x\to 0} \left(-\frac{1}{x^2}\right)$$
? (Parentheses are needed in this expression.)

$$\lim_{x \to 0^-} \frac{1}{x}?$$

$$\lim_{x \to 2^+} \frac{3}{x-2}?$$

$$\lim_{x \to -\infty} (7x^2 + 1)?$$

Recall that ∞ and $-\infty$ are not numbers, so we can't write arithmetic operations on them. Nevertheless, some limits behave as if you could. For example, $\lim_{x\to 0} \left(-\frac{1}{x^2}\right) = -\infty$ and $\lim_{x\to 0} (x^2 - 2\cos(x)) = -2$, so $\lim_{x\to 0} \left(-\frac{1}{x^2} + x^2 - 2\cos(x)\right) = -\infty$ and $\lim_{x\to 0} \left(-\frac{1}{x^2}\right)(x^2 - 2\cos(x)) = \infty$. Reasons: when x is close to 0 but $x \neq 0$, then $-\frac{1}{x^2}$ is very far from zero and **negative**, while $x^2 - 2\cos(x)$ is very close to -2. So $-\frac{1}{x^2} + x^2 - 2\cos(x)$ is still very far from zero and **negative**, while $\frac{1}{x^2}(x^2 - 2\cos(x))$ is now very far from zero and **positive**.

Continued on back.

2. Suppose now

$$\lim_{x \to 3} f(x) = \infty, \qquad \lim_{x \to 3} g(x) = \infty, \qquad \lim_{x \to 3} h(x) = 25, \qquad \lim_{x \to 3} j(x) = 0. \qquad \text{and} \qquad \lim_{x \to 3} k(x) = \frac{1}{100}.$$

What can you say about the following?

$$\lim_{x \to 3} (f(x) + g(x))?$$

$$\lim_{x \to 3} (f(x) - g(x))?$$

$$\lim_{x \to 3} (f(x) - k(x))?$$

$$\lim_{x \to 3} f(x)g(x)?$$

$$\lim_{x \to 3} f(x)k(x)?$$

$$\lim_{x \to 3} f(x)j(x)?$$

3. Use these ideas to find

$$\lim_{x \to 0^+} \left(\frac{26}{x} + 42x^2 + 7 \right), \qquad \lim_{x \to 0^-} \left(\frac{26}{x} + 42x^2 + 7 \right),$$

$$\lim_{x \to \infty} \left(\frac{26}{x} + 42x^2 + 7 \right), \quad \text{and} \quad \lim_{x \to -\infty} \left(\frac{26}{x} + 42x^2 + 7 \right).$$

4. Find
$$\lim_{x\to 3^+} \frac{x-7}{x-3}$$
.