WORKSHEET SOLUTIONS: INFINITE LIMITS

Names and student IDs: Solutions $[\pi\pi\pi-\pi\pi-\pi\pi\pi\pi]$

Recall: We say $\lim_{x \to a} f(x) = \infty$ (even though ∞ is not a number) if one can force f(x) to be as large as one wants by requiring that x be close enough to a. In particular, f has a vertical asymptote at x = a, near which the graph goes up on both sides. Example: $\lim_{x \to o} \frac{1}{x^2} = \infty$.

Plot this on your calculator to see, moving the screen around to show the parts of the function near x = 0.

Also look at the following table of values. You see that when x is close to zero (with either x > 0 or x < 0), then x^2 is positive and close to zero, and $\frac{1}{x^2}$ is ;positive and large.

x	x^2	$\frac{1}{x^2}$
1	1	1
0.1	0.01	100
0.01	0.0001	10,000
0.0001	0.00000001	100,000,000
-1	1	1
-0.1	0.01	100
-0.01	0.0001	10,000
-0.0001	0.00000001	100,000,000

Similar considerations give meanings to $\lim_{x \to a} f(x) = -\infty$, $\lim_{x \to a^-} f(x) = \pm \infty$, $\lim_{x \to \infty} f(x) = \pm \infty$, etc.

1. What are the following? Try computing some values if needed. After you have answered, look at calculator graphs to check.

 $\lim_{x \to 0} \left(-\frac{1}{x^2} \right) = -\infty.$
Some values:

x	x^2	$-\frac{1}{x^2}$
1	1	-1
0.1	0.01	-100
0.01	0.0001	-10,000
0.0001	0.00000001	100,000,000
-1	1	-1
-0.1	0.01	-100
-0.01	0.0001	-10,000
-0.0001	-0.00000001	-100,000,000

When x is close to zero, then x^2 is very close to zero and positive, so $-\frac{1}{x^2}$ is very far from zero and **negative**.

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty.$$

Some values:

Date: 14 February 2024.

x	1
	x
-1	-1
-0.1	-10
-0.01	-100
-0.0001	-10,000
1	

When x is close to zero and negative, then $\frac{1}{x}$ is very far from zero and negative.

$$\lim_{x \to 2^+} \frac{3}{x-2} = \infty.$$

Some values:

x	x-2	$\frac{3}{x-2}$
3	1	3
2.1	0.1	30
2.01	0.01	300
2.0001	0.0001	30,000

When x is close to 2 and x > 2, then x - 2 is close to zero and positive, so $\frac{3}{x-2}$ is very far from zero and positive.

 $\lim_{x \to -\infty} (7x^2 + 1) = \infty.$
Some values:

x	x^2	$7x^2 + 1$
-1	1	8
-10	100	701
-100	10,000	70,001
-10,000	100,000,000	700,000,001

When x is very far from zero and negative (that is, x is negative and |x| is very large), then $7x^2 + 1$ positive and very large.

Recall that ∞ and $-\infty$ are not numbers, so we can't write arithmetic operations on them. Nevertheless, some limits behave as if you could. For example, $\lim_{x\to 0} \left(-\frac{1}{x^2}\right) = -\infty$ and $\lim_{x\to 0} \left(x^2 - 2\cos(x)\right) = -2$, so $\lim_{x\to 0} \left(-\frac{1}{x^2} + x^2 - 2\cos(x)\right) = -\infty$ and $\lim_{x\to 0} \left(-\frac{1}{x^2}\right) (x^2 - 2\cos(x)) = \infty$. Reasons: when x is close to 0 but $x \neq 0$, then $-\frac{1}{x^2}$ is very far from zero and **negative**, while $x^2 - 2\cos(x)$ is very close to -2. So $-\frac{1}{x^2} + x^2 - 2\cos(x)$ is still very far from zero and **negative**, while $\frac{1}{x^2}(x^2 - 2\cos(x))$ is now very far from zero and **positive**.

2. Suppose now

 $\lim_{x \to 3} f(x) = \infty, \qquad \lim_{x \to 3} g(x) = \infty, \qquad \lim_{x \to 3} h(x) = 25, \qquad \lim_{x \to 3} j(x) = 0. \qquad \text{and} \qquad \lim_{x \to 3} k(x) = \frac{1}{100}.$ What can you say about the following?

What can you say about the following?

$$\lim_{x\to 3} (f(x) + g(x)) = \infty$$
. If both $f(x)$ and $g(x)$ are positive and very large, then so is $f(x) + g(x)$.

You can't say anything about $\lim_{x\to 3} (f(x) - g(x))$. As just one example, take $f(x) = \frac{1}{(x-3)^2}$ and $g(x) = \frac{1}{(x-3)^2} + 3\pi^4$. Then $\lim_{x\to 3} (f(x) - g(x)) = -3\pi^4$. This is an **indeterminate form**.

 $\lim_{x\to 3} (f(x) - h(x)) = \infty$. If f(x) is positive and very large (say, much bigger than 10⁶), and h(x) is close to 25, then f(x) - h(x) is still positive and very large, even if not quite as large (in the case above, still much bigger than 999,975).

 $\lim_{x\to 3} f(x)g(x) = \infty$. If both f(x) and g(x) are positive and very large, then so is f(x)g(x).

 $\lim_{x\to 3} f(x)k(x) = \infty$. If f(x) is positive and very large (say, much bigger than 100,000,000), and k(x) is close to $\frac{1}{100}$, then f(x)k(x) is still positive and very large, even if not quite as large (in the case above, still much bigger than 1,000,000).

You can't say anything about $\lim_{x\to 3} f(x)j(x)$. As just one example, take $f(x) = \frac{1}{(x-3)^2}$ and $j(x) = 35\pi^5(x-3)^2$. Then $\lim_{x\to 3} f(x)j(x) = 35\pi^5$. This is an **indeterminate form**.

3. Use these ideas to find

$$\lim_{x \to 0^+} \left(\frac{26}{x} + 42x^2 + 7\right), \qquad \lim_{x \to 0^-} \left(\frac{26}{x} + 42x^2 + 7\right),$$
$$\lim_{x \to \infty} \left(\frac{26}{x} + 42x^2 + 7\right), \qquad \text{and} \qquad \lim_{x \to -\infty} \left(\frac{26}{x} + 42x^2 + 7\right).$$

We have

$$\lim_{x \to 0^+} \frac{26}{x} = \infty, \qquad \lim_{x \to 0^-} \frac{26}{x} = -\infty, \qquad \lim_{x \to \infty} \frac{26}{x} = 0, \qquad \text{and} \qquad \lim_{x \to -\infty} \frac{26}{x} = 0,$$

while

$$\lim_{x \to 0^+} 42x^2 = 0, \qquad \lim_{x \to 0^-} 42x^2 = 0, \qquad \lim_{x \to \infty} 42x^2 = \infty, \qquad \text{and} \qquad \lim_{x \to -\infty} 42x^2 = \infty.$$

$$\lim_{x \to 0^+} \left(\frac{26}{x} + 42x^2 + 7 \right) = \infty, \qquad \lim_{x \to 0^-} \left(\frac{26}{x} + 42x^2 + 7 \right) = -\infty,$$
$$\lim_{x \to \infty} \left(\frac{26}{x} + 42x^2 + 7 \right) = \infty, \qquad \text{and} \qquad \lim_{x \to -\infty} \left(\frac{26}{x} + 42x^2 + 7 \right) = \infty.$$
d $\lim_{x \to -\infty} \frac{x - 7}{x}.$

4. Find $\lim_{x \to 3^+} \frac{x - 1}{x - 3}$.

Since $\lim_{x \to 3^+} (x - 7) = -4$ and $\lim_{x \to 3^+} \frac{1}{x - 3} = \infty$, we have $\lim_{x \to 3^+} \frac{x - 7}{x - 3} = -\infty$.