WORKSHEET: BASIC MECHANICS OF DIFFERENTIAL EQUATIONS

Names and student IDs: Solutions [πππ-ππππ]

1. Consider the differential equation

\[y'(x) - 2y(x) = 2e^{4x} \]

on \((-\infty, \infty)\). Verify that the function

\[y(x) = e^{4x} \]

satisfies this equation. That is, check that if the function \(y \) is defined by (2) for all real numbers \(x \), then the equation (1) holds for all real numbers \(x \).

Solution: For every real number \(x \), we have

\[y'(x) - 2y(x) = 4e^{4x} - 2e^{4x} = 2e^{4x}. \]

2. Consider the differential equation

\[f'(x) - 2f(x) = 2 - 2x^2 \]

on \((-\infty, \infty)\). Verify that the function

\[f(x) = x^2 \]

does not satisfy this equation. That is, if the function \(f \) is defined by (4) for all real numbers \(x \), find some real number \(x \) such that the equation (3) is false.

Solution:

\[f'(x) - 2f(x) = \frac{d}{dx}(x^2) - 2x^2 = 2x - 2x^2. \]

If we put \(x = 0 \), we get \(f'(x) - 2f(x) = 0 \), but the right hand side of (3) is equal to 2. Since \(0 \neq 2 \), this shows that (3) does not hold.

Many other choices of \(x \) will work. However, taking \(x = 1 \) will not work: the equation (3) does hold for this choice of \(x \).

Date: 5 March 2018.
3. Find all solutions to the differential equation \(f'(x) = x \sin(x^2) \) on \((-\infty, \infty)\). That is, find all functions \(f \) defined on \((-\infty, \infty)\) such that \(f'(x) = x \sin(x^2) \) for all real numbers \(x \).

Solution: The problem is just a fancy way of asking for all antiderivatives of \(x \sin(x^2) \). So, using the substitution \(u = x^2 \):

\[
\int x \sin(x^2) \, dx = -\frac{1}{2} \cos(x^2) + C,
\]

for an arbitrary real constant \(C \).

4. Verify that the function \(y(x) = 0 \) for all real \(x \) is a solution to the differential equation \(y'(x) = 6y(x) \) on \((-\infty, \infty)\). Then find a nonzero solution. Can you find a family of solutions with one free parameter? Can you find a solution \(y \) such that \(y(0) = 2 \)?

Solution: If \(y(x) = 0 \) for all \(x \), then \(y'(x) = 0 \) for all \(x \) and \(6y(x) = 0 \) for all \(x \).

The most obvious nonzero solution is \(y(x) = e^{6x} \).

The most obvious family of solution is \(y(x) = C e^{6x} \) for an arbitrary real constant \(C \). (These are all the solutions. Use the method of Problem 8 below.)

If \(y(0) = 2 \) and \(y(x) = C e^{6x} \) for all \(x \), then \(2 = y(0) = C e^{6\cdot0} = C \). So \(y(x) = 2 e^{6x} \) works.

5. Consider the differential equation \(g''(t) - 5g'(t) + g(t) = t^2 \) on \((-\infty, \infty)\). Find a real number \(a \) such that \(g(t) = t^2 + at + 48 \) satisfies this equation.

Solution: Put the formula for \(g \) into the equation:

\[
g''(t) - 5g'(t) + g(t) - t^2
= \frac{d^2}{dt^2}(t^2 + at + 48) - 5 \frac{d}{dt}(t^2 + at + 48) + t^2 + at + 48 - t^2
= \frac{d}{dt}(2t + a) - 5(2t + a) + at + 48
= 2 - 10t - 5a + at + 48 = 5(10 - a) + (a - 10)t.
\]

If \(a = 10 \), then this expression is zero for all real numbers \(t \).
6. Consider the differential equation \(y''(t) - 7y'(t) + 12y(t) = 0 \) on \((-\infty, \infty)\). Find all real numbers \(k \) such that the function \(y(t) = e^{kt} \) is a solution to this equation.

Solution: We have \(y'(t) = ke^{kt} \) and \(y''(t) = k^2e^{kt} \). So, for all real numbers \(t \),
\[
y''(t) - 7y'(t) + 12y(t) = k^2e^{kt} - 7ke^{kt} + 12e^{kt} = (k^2 - 7k - 4)e^{kt} = (k - 3)(k - 4)e^{kt}.
\]
This expression is supposed to be zero for all real numbers \(t \). If \((k - 3)(k - 4) = 0\), that is, if \(k = 3 \) or \(k = 4 \), then clearly \((k - 3)(k - 4)e^{kt} = 0\) for all real numbers \(t \). So these two values of \(k \) work. For any other value of \(k \), we have \((k - 3)(k - 4) \neq 0\). Taking \(t = 0 \), we get
\[
y''(0) - 7y'(0) + 12y(0) = (k - 3)(k - 4)e^0 = (k - 3)(k - 4) \neq 0,
\]
so \(y(t) = e^{kt} \) is not a solution.

7. For a fixed constant \(k > 0 \), find at least one nonzero solution to the differential equation \(x''(t) = -kx(t) \).

Solution: Remembering that \(\sin''(t) = -\sin(t) \), we try a function of the form \(x(t) = \sin(\omega t) \) for some real number \(\omega \). Rewrite the equation as \(x''(t) + kx(t) = 0 \), and substitute this function for \(x \), getting
\[
0 = x''(t) + kx(t) = \frac{d}{dt} (\omega \cos(\omega t)) + k \sin(\omega t) = -\omega^2 \sin(\omega t) + k \sin(\omega t).
\]
If \(\omega = \sqrt{k} \), then the last expression is zero for all real \(t \). So \(x(t) = \sin(\sqrt{k} t) \) is a nonzero solution.

Remark: The most general solution is
\[
x(t) = a \sin(\sqrt{k} t) + b \cos(\sqrt{k} t)
\]
for arbitrary (real) constants \(a \) and \(b \).

8. Consider the differential equation \(f'(x) = 3f(x) \) on \((-\infty, \infty)\). For every real constant \(C \), the function \(f(x) = Ce^{3x} \) is a solution to this equation. Are these all of the solutions?

Suppose \(f \) is an arbitrary solution to this differential equation. Use the differential equation to find
\[
\frac{d}{dx} (e^{-3x} f(x))
\]
in terms of x and $f(x)$. (The expression $f'(x)$ should not appear.) Then simplify your answer as much as possible. What does this tell you about $e^{-3x}f(x)$? What does this tell you about $f(x)$?

Solution: Using $f'(x) = 3f(x)$ at the second step, we get, for all x,
\[
\frac{d}{dx} \left(e^{-3x}f(x) \right) = -3e^{-3x}f(x) + e^{-3x}f'(x) = -3e^{-3x}f(x) + e^{-3x} \cdot 3f(x) = 0.
\]
Therefore $x \mapsto e^{-3x}f(x)$ is a constant function, that is, there is a constant C such that $e^{-3x}f(x) = C$ for all real x. But then $f(x) = Ce^{3x}$ for all real x.

Bonus question 1. We want to find a solution the differential equation $f'(x) + 2f(x) = 24e^{6x}$ on $(-\infty, \infty)$. Multiply both sides of it by e^{2x}. Do you recognize the left hand side as being the derivative of some function $H(x)$ (whose definition will involve $f(x)$)? Find $H(x)$ by integration, and use your answer to find $f(x)$.

Solution: Multiplying both sides by e^{2x} gives
\[
e^{2x}f'(x) + 2e^{2x}f(x) = 24e^{8x}.
\]
Write this as
\[
e^{2x}f'(x) + \frac{d}{dx} \left(e^{2x}f(x) \right) = 24e^{8x}.
\]
If $H(x) = e^{2x}f(x)$, then the left hand side is $H'(x)$. So $H'(x) = 24e^{8x}$. Therefore there is a constant C such that $H(x) = 3e^{8x} + C$. So
\[
f(x) = e^{-2x}H(x) = e^{-2x} \left(3e^{8x} + C \right) = 3e^{6x} + Ce^{-2x}.
\]

Bonus question 2. Find a function f defined on $(-\infty, \infty)$ such that $f'(x) - f(x) = e^x$ for all real x and $f(0) = 12$.

Solution: Multiplying both sides of the equation by e^{-x} gives
\[
\frac{d}{dx} \left(e^{-x}f(x) \right) = e^{-x}f'(x) - e^{-x}f(x) = 1.
\]
Therefore there is a constant C such that $e^{-x}f(x) = x + C$ for all real x. So $f(x) = xe^x + Ce^x$ for all real x. Putting $x = 0$ and using $f(0) = 12$, we get $12 = f(0) = C$. So $f(x) = xe^x + 12e^x$ works.