Math 252 Winter 2021. Office hours: Tues-Thurs 9:30-10:30 am by appointment, or a different meeting ID (see Canvas or course page.)

Course policies: Midterm 20% (proctored); final exam, short answer, no partial credit. It is solid on prerequisites, not a good early grade.

First in, in 8:10 am Canvas; by private request at MO. It has trouble with exam instructions, let me know right away.

3. Names of files submitted to Canvas (or emailed to me): no spaces, no punctuation, etc. Use only a-z, A-Z, 0-9, underscore, "", period in "pdf" etc. Change file name if needed.

4. Email in plain text only. (All systems send html, only email by default - need to change settings.) This protects me from "return receipt email" or other tracking.

5. Notation counts. Get it right. (See web pages on notation.)

Examples: \(\sqrt{2x} \) is \(\sqrt{x^2} \) or \((\sqrt{2})x \)?

- \(\frac{1}{x^2(x+6)} \) will be marked wrong unless \(x \) intended.
- \(\frac{1}{x+6} \) is not \(\frac{1}{x} + 6 \), more likely \(\frac{1}{x+6} \) is what?

Problem:

A ball is dropped off the lip of a vertical cliff, 300 m high, on the planet Glaepthsk, where \(g = 6 \) m/sec^2, a grav. acc. on its surface. Drop at time 0.

Acceleration is \(-6\) for \(t \geq 0 \) (until it hits the ground)

\[a(t) = -6 \]
Velocity \(v(t) \) at time \(t = 6t \). How do we know: need \(v'(6t) \)

What is now the height \(h(t) \) at time \(t \)? Need to have \(h'(t) = -6t \),
so \(h(t) \) should be \(-3t^2 \) with a slight correction. \(h(0) = 300 \), so should
really have \(h(t) = -3t^2 + 300 \). This gives the right direction and the right \(h(t) \)

When does the ball hit the ground? How fast is it falling at that time?

Solve \(h'(t) = 0 \). Get \(t = 0 \) .

(Read \(t = 0 \); \(x(t) = -60 \), so \(x(t) = 0 \), falling at \(60 \) m/sec.]

Problem: A particle moves along a horizontal straight line with velocity
\(v(t) = 20 \sin(t) \). What is its position at time \(t \)? \(\text{Calc} \ x(t) \)

Maybe \(x(t) = -20 \cos(t) \) . Check: \(x'(t) = -20 \cos(t) = -20(-\sin(t)) \)

\[= 20 \sin(t) \text{, yes} \]

Maybe \(x(t) = -20 \cos(t) + 762 \) ? Check: \(x'(t) = 20 \sin(t) \) yes.

Maybe \(x(t) = -20 \cos(t) + C \) for any fixed constant \(C \). Check: yes.

\[\left(\frac{dx}{dt} \right) = 0 \text{, yes} \].

Any other possibilities? No.

General problem: Given a function \(f \), find all functions \(F \) such that \(F' = f \)
(these are called "antiderivatives" of \(f \)).