Ex (last time). A valley floor is shaped like the region between \(y = 81 - x^2 \) and the \(x \)-axis. The straight (south) side is along the ocean. The population density \(y \) miles inland is \(100 - y \) people/square mile. What is the total population?

The population density is constant along any horizontal line.

(2.1 formula. \(100 - y \) depends only on \(y \), and thus on the line on which \(y \) is constant.)

\(dx \) should be small, then \(dy \) is drawn. The population density is approximately constant in entire rectangle, because \(y \) does not vary very much. Thus rectangle has length (horizontal) \(2x = 2(81 - y)^{1/2} \), so has area \(2x \Delta y = 2(81 - y)^{1/2} \Delta y \).

The \(x \)'s don't match. To be useful, these must match.

This is why \(x \) must be replaced by an expression involving only \(y \).

The rectangle has area \(2(81 - y)^{1/2} \Delta y \). (in square miles).

How many people (approximately) live in this rectangle?

The pop density in rectangle is \(1 \cdot 100 - y \) people/square mile. (since \(\Delta y \) is small, so \(\frac{dx}{dy} \approx 0 \)).

So its population is \(\int_{a}^{b} (100 - y) \cdot 2(81 - y)^{1/2} \Delta y \).

Imagine the valley floor being divided into many rectangles like this. Add their populations, getting a Riemann sum for some integral.

The integral is: \(\int_{100}^{81} (100 - y) \cdot 2(81 - y)^{1/2} \, dy \).

\(a \) and \(b \) are supposed to be values of \(y \), so \(a = 0 \) and \(b = 81 \).

Find \(a \) later.

Answer will be \(\int_{0}^{81} 2(100 - y) (81 - y)^{1/2} \, dy \).

\[\text{Suppose the pop density \(f(x, y) \)} \text{ were instead } 70 + x \text{ people per square mile.} \]

Would need to use vertically oriented rectangles, to make the pop density roughly constant in each rectangle. Do this at home. Should get:

\[\int_{-3}^{3} (70 + x) (81 - x^2) \, dx \] for total population.

\[\text{Pop density} \frac{\text{height}}{\text{width}} \text{ of the rectangles used.} \]
Ex: An unbalanced marble has radius 1 cm and, when the heavy side is down, density \(\frac{3-x}{g/cm^2} \) at height \(x \) cm above its center. What is its mass?

- \(x = 1 \)
- \(x = 0 \)

At height \(x \) <- intersection of a horizontal plane with the sphere.

- \(x = -1 \) Use horizontal because density is constant on this plane.

Make the plane to make a cylinder of height \(\Delta x \).

The cylinder has radius \(\sqrt{1-x^2} \) cm (radius of the red circle). (Note: use \(x \) as section.)

Center of sphere

Center of red circle

Right triangle

The cylinder has radius \(\sqrt{1-x^2} \) cm, height \(\Delta x \), and density about \(3-x \) g/cm².

Its volume is: \(\pi \left(\sqrt{1-x^2} \right)^2 \Delta x \). So mass is \(\int_{-1}^{1} \pi \left(\sqrt{1-x^2} \right)^2 \Delta x \) (3-x).

This is the mass of the green cylinder.

The total mass will be approximated by a sum of terms like this, so an approximating Riemann sum is: \(\sum_{k=1}^{n} \pi \left(\sqrt{1-x_k^2} \right)^2 (3-x_k) \Delta x \), and the integral giving the true mass is:

\[
\int_{-1}^{1} \pi \left(\sqrt{1-x^2} \right)^2 (3-x) \, dx = \int_{-1}^{1} \pi (1-x^2) (3-x) \, dx
\]

If left this out, would get the volume of the sphere.