Example Consider diff equ. \(y'(t) = -\frac{1}{10} y(t)(4 - y(t)) \) for \(t \in (-\infty, 0) \).

1. To find \(y'(11) \): \(y'(11) = -\frac{1}{10} y(11)(4 - y(11)) = -\frac{1}{10}(4 - 3) = -\frac{3}{10} \).
2. \(y'(11) < 0 \) so \(y \) should be decreasing near \(t = 11 \).

Suppose instead \(y(11) = 6 \). Then \(y'(11) = -\frac{1}{10} y(11)(4 - y(11)) = -\frac{1}{10}(4 - 6) = -\frac{2}{10} \).
So \(y \) should be decreasing near \(t = 11 \).

Back to \(y(11) = 3 \). Approximate \(y(11) \) using the linear approximation.

Also if \(y(11) = 6 \) instead:

New material starts here. Recall linear approximation: for \(h \) small, \(y(t+h) = y(t) + hy'(t) \).
So if \(y(t) = 3 \), then (assuming \(h \) is small enough) \(y(t+h) \approx y(t) + (0.1)y'(t) = 3 + (0.1)(-\frac{3}{10}) = 3.03 \).

Conclusion: \(y(11) \approx 3.03 \).

Suppose instead \(y(11) = 6 \). Then \(y(11.1) \approx y(11) + (0.1)y'(11) = 6 + (0.1)(-\frac{3}{10}) = 5.88 \).

Look at graph above: If \(y(t) \) is in the interval \((0, 4)\), then the function \(y(t) \) is increasing.
For which values of \(y(t) \) do we know that \(y \) is decreasing at \(t \)? If \(y(t) < 0 \), then the diff eqn tells us that \(y'(t) < 0 \), so \(y \) is decreasing.

Consider the function \(y(t) = 4 \) for all \(t \). (Constant function)

Does it solve the eqn? Recall eqn. \(y = \frac{1}{10} y(4 - y) \). For this choice of \(y(t) \), both sides are always zero, so this is a solution. There is one more constant solution: \(y(t) = 0 \) for all \(t \).

Rough picture of graphs of solutions:

Three principles: (1) Solutions curves never cross or merge. (2) For each \(t \) and \(y \), there is a solution satisfying the initial condition \(y(t) = y \). (3) Determine slope of a solution curve just by knowing \(y(t) \) (and fo more complicated cases also \(t \)).

These work for equations saying \(y'(t) \) is some function of \(t \) and \(y(t) \).
These are "direction fields"

\[
\begin{array}{l}
\text{for } y'(x) = \frac{1}{2} (y(x) - x) \\
\text{for } y'(x) = -\frac{1}{3} x y(x). \\
\text{[check!]}
\end{array}
\]

At the point \((x,y)\), there is a short line segment with slope \(\frac{1}{2} (y-x)\). (For example, along \(y=x\), \(y' = \text{all horizontal, that is, slope 0}\))

So a solution curve (graph of \(y = y(x)\) for some solution) must be tangent to the short line segment drawn at each point that the graph goes through.

These are computer-generated graphs of solution curves on the same direction fields.
Example: Consider \(y(t) = y(t)^4 - 6y(t)^3 + 5y(t)^2 \). (Special: \(t \) does not appear)

Q1: For which numbers \(c = y(t) = c \) (constant) is \(y(t) \) a solution? (Independently, only in \(y(t) \)

Q2: For what values of \(y(t) \) do we know that the solution \(y(t) \) must be increasing (decreasing) at \(t \)?

Let's factor the right-hand side: \(y'(t) = y(t)^2(y(t) - 1)(y(t) - 5) \).

A root for \(y'(t) = 0 \) so look for \(c \) such that \(c^2(c-1)(c-5) = 0 \).

In general form: \(c^2 - 6c^2 + 5c^2 = 0 \) \(\Rightarrow \) values of \(c \) are 0, 1, 5. So the constant solutions are \(y(t) = 0 \) for all \(t \), \(y_2(t) = 1 \) for all \(t \), and \(y_3(t) = 5 \) for all \(t \). This follows.

For Q2: the expression \(y^2(y-1)(y-5) \) is positive if \(y > 5 \)

\(~> 0 \quad ~< 0 \quad ~< 0\)

For \(y < 0 \) negative if \(y \) is in \((1, 5)\).

Positive if \(y \) is in \((0, 1)\) in green.

Positive if \(y < 0 \).

So: \(y(t) \) is increasing whenever \(y(t) > 5 \), \(y(t) \) is in \((0, 1)\), or \(y(t) < 0 \).

\(y(t) \) decreases if \(y(t) \) is in \((1, 5)\).