Recall that we defined, for all complex numbers z,

\[e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \frac{z^5}{5!} + \cdots, \]

\[\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots, \quad \text{and} \quad \sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots, \]

and that these series do in fact converge for all complex numbers z.

Also recall that the usual laws of arithmetic hold for complex numbers, together with the usual properties of the absolute value function $z \mapsto |z|$. (However, it doesn’t make sense to say a complex number is positive or negative.)

1. Check that $i^3 = -i$, $i^4 = 1$, and $i^5 = i$. What is i^{103}?

2. By substituting iz for z in the series for e^z, verify that $e^{iz} = \cos(z) + i\sin(z)$ for any complex number z.

Date: 6 June 2018.
3. Consider the equation from Problem 2, but put a *real* number y in place of z. One gets $e^{iy} = \cos(y) + i\sin(y)$ for all real numbers y. Use this equation to find all real numbers y such that $e^{iy} = 1$.

Hint: $y = 0$ and $y = 2\pi$ are among the solutions, but there are no solutions in $(0, 2\pi)$. (Why not?)

4. Use the equation from Problem 3 to show that $|e^{iy}| = 1$ for all real numbers y.

5. Recall that $e^{w+z} = e^w e^z$ for all complex numbers w and z. Use this and the formula in Problem 4 to show that if a and b are real, then $|e^{a+bi}| = e^a$.

6. Find all complex numbers z such that $e^z = 1$.
7. Find all complex numbers \(z \) such that \(e^z = -1 \).

8. By similar methods to Problem 2, verify that for any complex number \(z \), we have

\[
\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}.
\]
9. Using the power series expansions, find a formula for \(\cos(z) \) which is similar to that in Problem 8.

If \(z = a + bi \) with \(a \) and \(b \) real, then \(a \) is called the real part of \(z \), written \(\text{Re}(z) \), and \(b \) is called the imaginary part of \(z \), written \(\text{Im}(z) \). (Note the convention: \(\text{Im}(z) \) is a real number. Also, \(z = \text{Re}(z) + \text{Im}(z)i \).)

Bonus problem 1. If \(\alpha \) is real and \(z \) is complex, express \(\text{Re}(\alpha z) \) and \(\text{Im}(\alpha z) \) in terms of \(\text{Re}(z) \), \(\text{Im}(z) \), and \(\alpha \).

Bonus problem 2. If \(w \) and \(z \) are complex, what are \(\text{Re}(w + z) \) and \(\text{Im}(w + z) \) in terms of the real and imaginary parts of \(w \) and \(z \)?

Bonus problem 3. If \(w \) and \(z \) are complex, what are \(\text{Re}(wz) \) and \(\text{Im}(wz) \) in terms of the real and imaginary parts of \(w \) and \(z \)? (They are not \(\text{Re}(w)\text{Re}(\bar{z}) \) and \(\text{Im}(w)\text{Im}(\bar{z}) \).)