1. Determine whether the series \(\sum_{n=1}^{\infty} \frac{1}{n^{2/3}} \) converges or diverges.

(Using a theorem from Tuesday, you should be able to give a two sentence reason without actually carrying out any tests.)

2. Determine whether the series \(\sum_{n=13}^{\infty} \frac{178}{n^{7/3}} \) converges or diverges. Write your reasoning in a mathematically and notationally correct form.

(This one is nearly as easy as the first problem.)

3. Use the Integral Test to determine whether the series \(\sum_{n=1}^{\infty} \frac{1}{16n^2 + 1} \) converges. You will use a suitable function \(f \); make sure to check that your choice of \(f \) satisfies the two conditions it is supposed to.

(You should not need methods from Math 251 to check the hypotheses: they follow quickly from ordinary algebra.)

Date: 26 April 2023.
4. Use the Integral Test to determine whether the series \(\sum_{n=1}^{\infty} \frac{[\ln(n)]^3}{n} \) converges. You will use a suitable function \(f \); make sure to check that your choice of \(f \) satisfies the two conditions it is supposed to.

(You will need methods from Math 251 to check the hypotheses of the integral test.)

5. Determine whether the series \(\sum_{n=1}^{\infty} \left(\sqrt[3]{11 + \frac{781}{n}} - \sqrt[3]{11 + \frac{781}{n+1}} \right) \) converges or diverges. If it converges, what is the sum? Write your reasoning in a mathematically and notationally correct form.

6. Determine whether the series \(\sum_{n=13}^{\infty} \frac{178}{n^{7/3}} - \frac{1}{4^n} \sum_{n=13}^{\infty} \left(\frac{178}{n^{7/3}} + \frac{1}{4^n} \right) \) converges or diverges. Write your reasoning in a mathematically and notationally correct form.