SOLUTIONS TO WORKSHEET: INTEGRAL TEST FOR CONVERGENCE 2

Names and student IDs: Solutions ππππ-ππππ-πππππ

1. Determine whether the series \(\sum_{n=1}^{\infty} \frac{1}{n^{2/3}} \) converges or diverges.

(Using a theorem from Tuesday, you should be able to give a two sentence reason without actually carrying out any tests.)

Solution: The series has the form \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) with \(p = \frac{2}{3} \). Since \(\frac{2}{3} < 1 \), the series diverges.

2. Determine whether the series \(\sum_{n=13}^{\infty} \frac{178}{n^{7/3}} \) converges or diverges. Write your reasoning in a mathematically and notationally correct form.

(This one is nearly as easy as the first problem.)

Solution: The series \(\sum_{n=1}^{\infty} \frac{1}{n^{7/3}} \) has the form \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) with \(p = \frac{7}{3} \). Since \(\frac{7}{3} > 1 \), this series diverges.

Therefore also the series \(\sum_{n=13}^{\infty} \frac{1}{n^{7/3}} \) converges (although not to the same sum. Now
\[
\sum_{n=13}^{\infty} \frac{178}{n^{7/3}} = 178 \sum_{n=13}^{\infty} \frac{1}{n^{7/3}}
\]
converges.

3. Use the Integral Test to determine whether the series \(\sum_{n=1}^{\infty} \frac{1}{16n^2 + 1} \) converges. You will use a suitable function \(f \); make sure to check that your choice of \(f \) satisfies the two conditions it is supposed to. (You should not need methods from Math 251 to check the hypotheses: they follow quickly from ordinary algebra.)

Date: 26 April 2023.
Solution: We take \(f(x) = \frac{1}{16x^2 + 1} \). We need to check that \(f(x) \geq 0 \) beyond some point; this is clearly true for all real \(x \). We need to check that \(f \) is nonincreasing beyond some point; since \(x \mapsto \frac{1}{x^2 + 1} > 0 \) and is increasing on \([0, \infty)\), clearly \(x \mapsto \frac{1}{x^2 + 1} \) is decreasing on \([0, \infty)\).

Now, using the substitution \(u = 4x \), so \(du = \frac{1}{4} \, dx \),

\[
\int_{0}^\infty \frac{1}{16x^2 + 1} \, dx = \frac{1}{4} \arctan(u) + C = \frac{1}{4} \arctan(4x) + C.
\]
Therefore

\[
\int_{0}^\infty \frac{1}{16x^2 + 1} \, dx = \frac{1}{4} \arctan(4x) \bigg|_{0}^{\infty} = \lim_{b \to \infty} \left(\frac{1}{4} \arctan(4x) \bigg|_{0}^{b} \right) = \frac{1}{4} \lim_{b \to \infty} \left(\arctan(4b) - \frac{1}{4} \arctan(0) \right) = \frac{\pi}{8} - 0 = \frac{\pi}{8}.
\]
So the improper integral converges. Therefore \(\sum_{n=1}^{\infty} \frac{1}{16n^2 + 1} \) converges.

4. Use the Integral Test to determine whether the series \(\sum_{n=1}^{\infty} \frac{[\ln(n)]^3}{n} \) converges. You will use a suitable function \(f \); make sure to check that your choice of \(f \) satisfies the two conditions it is supposed to.

(You will need methods from Math 251 to check the hypotheses of the integral test.)

Solution: We take \(f(x) = \frac{[\ln(x)]^3}{x} \). We need to check that \(f(x) \geq 0 \) beyond some point; this is clearly true for all \(x > 1 \). We also need to check that \(f \) is nonincreasing beyond some point. For this, we calculate

\[
f'(x) = \frac{3[\ln(x)]^2 \cdot \left(\frac{1}{x} \right) \cdot x - [\ln(x)]^3}{x^2} = \frac{3[\ln(x)]^2 - [\ln(x)]^3}{x^2} = \frac{[3 \ln(x)] \ln(x)}{x^2}.
\]
If \(x > e^3 \) then \(\ln(x) > 3 \), so \(f'(x) < 0 \). So \(f \) is decreasing on \((e^3, \infty)\).

Using the substitution \(u = \ln(x) \), so \(du = \frac{1}{x} \, dx \), we get

\[
\int_{1}^{\infty} \frac{[\ln(x)]^3}{x} \, dx = \left(\frac{1}{4} [\ln(x)]^4 \right) \bigg|_{1}^{\infty}.
\]
Since \(\lim_{x \to \infty} \frac{1}{4} [\ln(x)]^4 = \infty \), the improper integral diverges. Therefore \(\sum_{n=1}^{\infty} \frac{[\ln(n)]^3}{n} \) diverges.
Do not start the integral at 0. The integral \(\int_0^\infty \frac{[\ln(x)]^3}{x} \, dx \) diverges because of bad behavior at 0, which hides the part relevant to the integral test.

5. Determine whether the series \(\sum_{n=1}^{\infty} \left(\sqrt[7]{11 + \frac{781}{n}} - \sqrt[7]{11 + \frac{781}{n+1}} \right) \) converges or diverges. If it converges, what is the sum? Write your reasoning in a mathematically and notationally correct form.

Solution: The \(n \)th partial sum \(s_n \) of the series is
\[
s_n = \sum_{k=1}^{n} \left(\sqrt[7]{11 + \frac{781}{k}} - \sqrt[7]{11 + \frac{781}{k+1}} \right) = \sqrt[7]{11 + \frac{781}{1}} - \sqrt[7]{11 + \frac{781}{n+1}}.\]

Since \(\lim_{n \to \infty} \frac{781}{n+1} = 0 \), we have
\[
\lim_{n \to \infty} \sqrt[7]{11 + \frac{781}{n+1}} = \sqrt[7]{11}.
\]

Therefore
\[
\sum_{n=1}^{\infty} \left(\sqrt[7]{11 + \frac{781}{n}} - \sqrt[7]{11 + \frac{781}{n+1}} \right) = \lim_{n \to \infty} s_n
\]
\[
= \lim_{n \to \infty} \left(\sqrt[7]{11 + \frac{781}{1}} - \sqrt[7]{11 + \frac{781}{n+1}} \right)
\]
\[
= \sqrt[7]{791} - \sqrt[7]{11}.
\]
Thus, this series converges to \(\sqrt[7]{791} - \sqrt[7]{11} \).

6. Determine whether the series \(\sum_{n=13}^{\infty} \left(\frac{178}{n^{7/3}} + \frac{1}{4^n} \right) \) converges or diverges. Write your reasoning in a mathematically and notationally correct form.

Solution: We saw in Problem 2 above that \(\sum_{n=13}^{\infty} \frac{178}{n^{7/3}} \) converges. The series \(\sum_{n=13}^{\infty} \frac{1}{4^n} \) is a geometric series with common ration \(\frac{1}{4} \), and \(-1 < \frac{1}{4} < 1 \), so the series converges. Therefore \(\sum_{n=13}^{\infty} \left(\frac{178}{n^{7/3}} + \frac{1}{4^n} \right) \) converges.