1. (8 points.) Define a sequence \((a_n)_{n=1}^{\infty} \) by \(a_n = \frac{11e^{2n} - 1}{e^{2n} + 11} \) for strictly positive integers \(n \). Find its limit (possibly \(\infty \) or \(-\infty \)), giving reasons, or explain why the sequence neither converges nor diverges to \(\infty \) or \(-\infty \). Reasons must be given in mathematically and notationally correct form.

Solution: We have

\[
\lim_{n \to \infty} \frac{11e^{2n} - 1}{e^{2n} + 11} = \lim_{n \to \infty} \frac{e^{2n}(11e^{2n} - 1)}{e^{2n}(e^{2n} + 11)} = \lim_{n \to \infty} \frac{11 - e^{-2n}}{1 + 11e^{-2n}} = \frac{11 - 0}{1 + 11 \cdot 0} = 11.
\]

2. (7 points.) Let \((a_n)_{n=1}^{\infty} \) be a sequence, and let \(L \) be a real number. State the precise definition of what it means to have \(\lim_{n \to \infty} a_n = L \).

Solution: For every \(\varepsilon > 0 \) there is a positive integer \(N \) such that for every integer \(n > N \), we have \(|a_n - L| < \varepsilon \).

3. (8 points.) Define a sequence \((x_n)_{n=1}^{\infty} \) by \(x_n = \frac{n}{2n + 1} \) for \(n = 1, 2, \ldots \). For \(\varepsilon = 0.02 \), find some integer \(N > 0 \) such that for all \(n > N \) we have \(|x_n - \frac{1}{2}| < \varepsilon \), and show in mathematically and notationally correct steps that your choice works. (You need not find the best value of \(N \).)

Scratchwork (not needed as part of the solution): For \(n = 1, 2, 3, \ldots \) rewrite

\[
\left| x_n - \frac{1}{2} \right| = \left| \frac{n}{2n + 1} - \frac{1}{2} \right| = \left| \frac{2n - (2n + 1)}{2(2n + 1)} \right| = \left| \frac{-1}{2(2n + 1)} \right| = \frac{1}{2(2n + 1)}.
\]

We want to have

\[
\frac{1}{2(2n + 1)} < 0.02,
\]

so

\[
2n + 1 > \frac{1}{(2)(0.02)} = 25,
\]

so we want \(n > 12 \). So it is enough to take \(N = 12 \).

Solution: Take \(N = 20 \). [This is not the best possible choice; the scratchwork above shows that \(N = 12 \) is the best possible choice.] Let \(n \) be any integer with \(n > N \). Then

\[
\left| x_n - \frac{1}{2} \right| = \left| \frac{n}{2n + 1} - \frac{1}{2} \right| = \left| \frac{-1}{2(2n + 1)} \right| = \frac{1}{2(2n + 1)} < \frac{1}{2(2N + 1)} = \frac{1}{2(2 \times 20 + 1)} = \frac{1}{82} < \frac{1}{50} = 0.02.
\]
4. (8 points.) Determine whether or not the series $\sum_{n=1}^{\infty} (-1)^n \sin \left(\frac{\pi}{2} - \frac{1}{2n} \right)$ is convergent. Be sure to show your reasoning. If the series is convergent, find its sum. Use mathematically and notationally correct steps.

Solution: We have

$$\lim_{n \to \infty} \left(\frac{\pi}{2} - \frac{1}{2n} \right) = \frac{\pi}{2}.$$

Since $x \mapsto \sin(x)$ is continuous at $\frac{\pi}{2}$, it follows that

$$\lim_{n \to \infty} \sin \left(\frac{\pi}{2} - \frac{1}{2n} \right) = \sin \left(\frac{\pi}{2} \right) = 1.$$

Therefore

$$\lim_{n \to \infty} (-1)^n \sin \left(\frac{\pi}{2} - \frac{1}{2n} \right)$$

does not exist. Since the summands don’t converge to 0, the series $\sum_{n=1}^{\infty} (-1)^n \sin \left(\frac{\pi}{2} - \frac{1}{2n} \right)$ is divergent.

5. (8 points.) Determine whether or not the series $\sum_{n=0}^{\infty} \frac{4^n}{3^{n+2}}$ is convergent. Be sure to show your reasoning. If the series is convergent, find its sum. Use mathematically and notationally correct steps.

Solution: This is a geometric series with common ratio $\frac{4}{3}$. Since $\frac{4}{3} > 1$, the summands don’t approach zero (in fact, $\lim_{n \to \infty} \frac{4^n}{3^{n+2}} = \infty$), so the series is divergent.

6. (8 points.) Determine whether or not the series $\sum_{n=1}^{\infty} [\sqrt{n+1} - \sqrt{n+2}]$ is convergent. Be sure to show your reasoning. If the series is convergent, find its sum. Use mathematically and notationally correct steps.

Solution: This is a telescoping series. The nth partial sum s_n is

$$s_n = \sum_{k=1}^{n} [\sqrt{k+1} - \sqrt{k+2}] = \sqrt{2} - \sqrt{n+2}.$$

Since $\lim_{n \to \infty} \sqrt{n} = \infty$, it follows that $\lim_{n \to \infty} \sqrt{n+2} = \infty$, so

$$\sum_{n=1}^{\infty} [\sqrt{n} - \sqrt{n+1}] = \lim_{n \to \infty} s_n = \lim_{n \to \infty} [\sqrt{2} - \sqrt{n+2}] = -\infty.$$
Thus, the series diverges.

7. (8 points.) Find the Taylor polynomial for the function \(f(x) = e^{x-2} \) of degree 6 centered at \(x = 0 \). (Don’t multiply out the coefficients.) Use mathematically and notationally correct steps.

Solution: We use the formula

\[
p_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots + \frac{f^{(n)}(0)}{n!}x^n
\]

for the \(n \)-th Taylor polynomial, with \(n = 6 \). We have \(f'(x) = e^{x-2} \), \(f''(x) = e^{x-2} \), etc.; in fact, \(f^{(n)}(x) = e^{x-2} \) for all positive integers \(n \). So

\[
f(0) = e^{-2}, \quad f'(0) = e^{-2}, \quad f''(0) = e^{-2}, \ldots, \quad f^{(6)}(0) = e^{-2}.
\]

Therefore the degree 6 Taylor polynomial is

\[
e^{-2} + e^{-2}x + \frac{e^{-2}}{2!}x^2 + \frac{e^{-2}}{3!}x^3 + \frac{e^{-2}}{4!}x^4 + \frac{e^{-2}}{5!}x^5 + \frac{e^{-2}}{6!}x^6.
\]

The answer

\[
q(x) = 1 + (x - 2) + \frac{1}{2!}(x - 2)^2 + \cdots + \frac{1}{6!}(x - 2)^6
\]

isn’t right. For example, the next term, \(\frac{1}{7!}(x - 2)^7 \), contributes something of degree zero. Another way to see this is to check that

\[
q(0) = 1 + (-2) + \frac{1}{2!}(-2)^2 + \frac{1}{3!}(-2)^3 + \frac{1}{4!}(-2)^4 + \frac{1}{5!}(-2)^5 + \frac{1}{6!}(-2)^6 \neq e^{-2}.
\]

8. (8 points.) Define \(f(x) = \cos(2x^4) \) for all real \(x \). Find \(f^{(8)}(0) \). (Remember to show your work in mathematically and notationally correct steps. Simplify your answer but don’t multiply out powers, factorials, etc.)

Solution: The Taylor series for \(\cos(x) \) is

\[
1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots.
\]

Putting \(2x^4 \) in place of \(x \) and discarding terms of degree greater than 8 gives

\[
\cos(2x^4) \approx 1 - \frac{(2x^4)^2}{2!} = 1 - 2x^8.
\]

So \(f^{(8)}(0) = -2 \cdot 8! \).
9. (8 points.) The sequence \((c_n)_{n=1}^\infty\) is given by the formula
\[c_n = 3 + \frac{(-1)^{n+1}}{2n + 7}\]
for \(n = 1, 2, 3, \ldots\). Determine whether this sequence is nondecreasing (“increasing” in the textbook), nonincreasing (“decreasing” in the textbook), or not monotone. Also determine whether it is bounded. Remember to show work in a mathematically and notationally correct manner.

Solution: The sequence \((c_n)_{n=1}^\infty\) fails to be nonincreasing since
\[c_2 = 3 - \frac{1}{2 \cdot 2 + 7} = 3 - \frac{1}{11} < 3 + \frac{1}{13} = 3 + \frac{1}{2 \cdot 3 + 7} = c_3.\]
This sequence fails to be nonincreasing since
\[c_1 = 3 + \frac{1}{2 \cdot 1 + 7} = 3 + \frac{1}{9} > 3 - \frac{1}{11} = 3 + \frac{1}{2 \cdot 2 + 7} = c_2.\]
Since it is neither nondecreasing nor nonincreasing, it is not monotone.

(A correct proof must give explicit cases both of \(n > m\) such that \(c_n < c_m\) and of \(n > m\) such that \(c_n > c_m\), as was done above. However, many choices other than those above are possible.)

For \(n = 1, 2, 3, \ldots\), we have \(0 < 9 \leq 2n + 7\), so
\[-\frac{1}{9} \leq \frac{(-1)^{n+1}}{2n + 7} \leq \frac{1}{9},\]
whence
\[3 - \frac{1}{9} \leq c_n \leq 3 + \frac{1}{9}.\]
Therefore \((c_n)_{n=1}^\infty\) is bounded both above and below. Thus \((c_n)_{n=1}^\infty\) is bounded.

Alternate solution for boundedness: We have \(\lim_{n \to \infty} (2n + 7) = \infty\), so
\[\lim_{n \to \infty} c_n = \lim_{n \to \infty} \left(3 + \frac{(-1)^{n+1}}{2n + 7}\right) = 3 + 0 = 3.\]
Since convergent sequences are bounded, we conclude that \((c_n)_{n=1}^\infty\) is bounded.

10. (8 points.) Find the Taylor polynomial for the function \(f(x) = \sin(x)\) of degree 7 centered at \(x = \pi\) (not \(x = 0\)). (Simplify but don’t multiply out the coefficients.)

Solution:
\[T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n.\]
for the \(n\)-th Taylor polynomial, with \(n = 7\) and \(a = \frac{\pi}{2}\). The required derivatives are:
\[f(x) = \sin(x), \quad \text{so} \quad f(\pi) = \sin(\pi) = 0,\]
\[f'(x) = \cos(x), \quad \text{so} \quad f'(\pi) = \cos(\pi) = -1,\]
\[f''(x) = -\sin(x), \quad \text{so} \quad f''(\pi) = -\sin(\pi) = 0,\]
\[f'''(x) = -\cos(x), \quad \text{so} \quad f'''(\pi) = -\cos(\pi) = 1, \]
\[f^{(4)}(x) = \sin(x), \quad \text{so} \quad f^{(4)}(\pi) = \sin(\pi) = 0, \]
\[f^{(5)}(x) = \cos(x), \quad \text{so} \quad f^{(5)}(\pi) = \cos(\pi) = -1, \]
\[f^{(6)}(x) = -\sin(x), \quad \text{so} \quad f^{(6)}(\pi) = -\sin(\pi) = 0, \]
and
\[f^{(7)}(x) = -\cos(x), \quad \text{so} \quad f^{(7)}(\pi) = -\cos(\pi) = 0. \]

Therefore the required polynomial is
\[T_n(x) = -(x - \pi) + \frac{1}{3!}(x - \pi)^3 - \frac{1}{5!}(x - \pi)^5 + \frac{1}{7!}(x - \pi)^7. \]

Alternate solution: Start with the Taylor polynomial for \(\sin(x) \) and substitute \(x - \pi \), getting the Taylor polynomial for \(\sin(x - \pi) \) centered at \(\pi \). Then use \(\sin(x) = -\sin(x - \pi) \).

11. (5 points.) A sequence \((c_n)_{n=1}^\infty \) starts
\[\left(\frac{1}{2}, -\frac{3}{4}, \frac{5}{8}, -\frac{7}{16}, \frac{9}{32}, \cdots \right). \]
Assuming the pattern continues, find a formula for the general term \(c_n \).

Solution: \(c_n = \frac{(-1)^{n+1}(2n - 1)}{2^n} \) for strictly positive integers \(n \).

12. (8 points.) Define a sequence \((a_n)_{n=1}^\infty \) by \(a_n = (-1)^{n+1}\sin\left(\frac{2}{n}\right) \) for strictly positive integers \(n \). Find its limit (possibly \(\infty \) or \(-\infty \)), giving reasons, or explain why the sequence neither converges nor diverges to \(\infty \) or \(-\infty \). Use mathematically and notationally correct steps.

Solution: For \(n = 2, 3, 4, \ldots \), we have \(0 < \frac{2}{n} \leq \frac{\pi}{2} \), so \(\sin\left(\frac{2}{n}\right) \geq 0 \). Therefore
\[-\sin\left(\frac{2}{n}\right) \leq a_n \leq \sin\left(\frac{2}{n}\right). \]
Now \(\lim_{n \to \infty} \frac{2}{n} = 0 \), and \(x \mapsto \sin(x) \) is continuous at \(x = 0 \), so \(\lim_{n \to \infty} \sin\left(\frac{2}{n}\right) = 0 \). Similarly
\[\lim_{n \to \infty} \left(-\sin\left(\frac{2}{n}\right)\right) = 0. \]
Therefore \(\lim_{n \to \infty} a_n = 0 \) by the Squeeze Theorem.

13. (8 points.) Determine whether the series \(\sum_{n=1}^\infty \frac{n}{1 + 2n^2} \) converges or diverges. Be sure to show your reasoning in mathematically and notationally correct steps.
Solution: Use the Integral Test. We take \(f(x) = \frac{x}{1 + 2x^2} \). We need to check that \(f(x) \geq 0 \) beyond some point; this is clearly true for all \(x > 0 \). We need to check that \(f \) is nonincreasing beyond some point. We check this using \(f' \). We have

\[
f'(x) = \frac{1 + 2x^2 - x(4x)}{(1 + 2x^2)^2} = \frac{1 - 2x^2}{(1 + 2x^2)^2}.
\]

This expression is clearly negative when \(x > 1 \), so \(f \) is decreasing on \((1, \infty)\).

(A correct solution **must** show that you checked the hypotheses for the Integral Test.)

The substitution \(u = 2x^2 \) gives

\[
\int \frac{x}{1 + 2x^2} \, dx = \frac{1}{4} \ln(1 + 2x^2) + C,
\]

Therefore

\[
\int_{1}^{\infty} \frac{x}{1 + 2x^2} \, dx = \lim_{b \to \infty} \int_{1}^{b} \frac{x}{1 + 2x^2} \, dx = \lim_{b \to \infty} \left(\frac{1}{4} \ln(1 + 2x^2) \bigg|_{1}^{b} \right) = \lim_{b \to \infty} \left(\frac{1}{4} \ln(1 + 2b^2) - \frac{1}{4} \ln(1 + 2) \right).
\]

Since \(\lim_{b \to \infty}(1 + 2b^2) = \infty \), we also have \(\lim_{b \to \infty} \frac{1}{4} \ln(1 + 2b^2) = \infty \). So the improper integral diverges. Therefore \(\sum_{n=1}^{\infty} \frac{n}{1 + 2n^2} \) diverges.