Notation:

In scalar mult., scalars always on left, vectors on the right.

If \(c \) is a scalar, \(\mathbf{v} \) is a vector, then write \(cv \) for product (scalar multiplication), never \(vc \).

Also: \(\frac{1}{c} \mathbf{v} \), better \((\frac{1}{c})\mathbf{v}\) or \(\mathbf{v}/c \), never \(\mathbf{v}/c \).

Matrices:

\[
\begin{pmatrix}
1 & 2 & 7 \\
-3 & 4 & 2 \\
-5 & -2 & -1
\end{pmatrix}
\]

is a matrix.

Other notation:

\[
\begin{pmatrix}
2 & 7 \\
-3 & 4 \\
-5 & -2
\end{pmatrix}
\]

also ok.

\(\det \) never means a determinant. Need to write \(\det \left(\begin{pmatrix} 1 & 2 & 7 \\ -3 & 4 & 2 \\ -5 & -2 & -1 \end{pmatrix} \right) \)

or \(\det \left(\begin{pmatrix} 1 & 2 \\ -3 & -2 \end{pmatrix} \right) \).

However, \(\begin{pmatrix} 1 & 2 & 7 \\ -3 & 4 & 2 \\ -5 & -2 & -1 \end{pmatrix} \) is bad notation, but \textcolor{red}{\textbf{always means a determinant}}

\(\text{never just the matrix.} \)

Last time: distance from a point to a plane. Distinct from \(p \) to \(\mathbf{z} \) point not at \(q \), to \(M \).

\(\text{That is, meant } \textbf{M} \text{ in picture.} \)

Need a normal vector, say \(\mathbf{n} \).

Project \(\mathbf{w} \) to \(\mathbf{n} \), but it norm of \(\mathbf{w} \).

\(\text{Call it } M \)
We get: \[d = \frac{|n \cdot w|}{\|n\|}. \]

The example was plane \(x + 4y - 2z = 6 \),
\(p = (3, 2, -1) \). For \(q \) take \((6, 0, 0)\)
\(n = \langle 1, 4, -2 \rangle \) and \(w = \langle 3, 2, -1 \rangle - \langle 6, 0, 0 \rangle = \langle -3, 2, -1 \rangle. \)
get \(d = \frac{1}{\sqrt{51}} \). This is the distance from the point to the plane.

Ex. (wait, carry me out unless you want me).
Distance between two parallel planes, say \(M \) and \(N \)? Choose some point \(p \) and \(q \) and
then find distance from \(p \) to \(M \) as above.

Ex: Distance between the skew lines, \(L_1 \) and \(L_2 \).
Method is: Find parallel plane \(M_1 \) containing \(L_1 \) and \(M_2 \) containing \(L_2 \), and find
distance between \(M_1 \) and \(M_2 \).

If \(L_1 \) is given by \(r(t) = (3, 2, -1) + t\langle -4, 1, 0 \rangle \)
\(L_2 \)

If \(L_2 \) is given by \(s(t) = (4, 0, 0) + t\langle 0, 1, 2 \rangle \).

A plane parallel to both \(L_1 \) and \(L_2 \) will have a normal vector
orthogonal to direction of both lines. Here we \(n = \langle -4, 1, 0 \rangle \times \langle 0, 1, 2 \rangle. \)
Now use previous method.

12.6: Surface of quadric type in \(\mathbb{R}^3 \)

Parabola:
In \(\mathbb{R}^2 \):

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

Hyperbola:
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]

Ellipse:

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]

Parabola:
\[y = 2x^2 \]
Now three kinds of things: ellipses and hyperbolas

Stick with axes parallel to coordinate axes. (x = 1 in \(\mathbb{R}^2 \) has axes not parallel to coord axes).

See book (or any other similar book) for pictures.

(1) \(x^2 + y^2 + z^2 = 1 \): sphere, center (0,0,0), radius 1.

\[\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1 \]: Ellipsoid.

In the x plane, it goes from

\((-2,0,0) \) to \((2,0,0)\)

\((0,3,0) \) to \((0,3,0)\)

\((0,0,-1) \) to \((0,0,1)\).

Consider intersections of the ellipsoid with a plane. Called here a "trace."

Use for now only planes parallel to the coordinate planes. In any of these, the intersections is a ellipse (e.g., \(z = 0 \), \(z = \frac{1}{2} \)), or empty (\(z = 2 \)) or a single point (at \(z = 1 \)).
Net: (2) $x^2 + y^2 - z^2 = 1$

Hyperboloid of one sheet.

Here, the horizontal traces (intersection with horizontal planes) are ellipses.

At $z = 4$, get $x^2 + y^2 - 16 = 1$, so $x^2 + y^2 = 17$.

Vertical trace (could use x-constant or y-constant) for general one get ellipse.

Both kinds of vertical traces give same results.

Take plane $y = 3$. Get $x^2 + 9 - z^2 = 1$ or $x^2 - z^2 = 8$.

Get hyperbola opening "right and left" in the y direction.

Similar for $x = 11$.

(3) $x^2 - y^2 - z^2 = 1$

Repeat above. Do a different one of same kind: $z^2 - x^2 - y^2 = 1$.

Rewrite as $x^2 + y^2 = z^2 - 1$.

No solutions if $-1 < z < 1$. Got

Hyperboloid of two sheets.

Horizontal traces? Here circles, more generally ellipses.

Vertical traces? Hyperbolas facing up and down.
\[\frac{z}{3} = \frac{x^2}{4} + \frac{y^2}{6} = \left(\frac{x}{2}\right)^2 + \left(\frac{y}{\sqrt{6}}\right)^2 \]

If we consider the plane \(z = 3 \), we have \(\frac{x^2}{2^2} + \frac{y^2}{3^2} = 1 \). This is an ellipse.