Recall: A function f with domain in \mathbb{R}^2 (or \mathbb{R}^n with change of notation) is continuous at (x,y) if

$$f(a,b) \text{ is defined, and lim } f(x,y) = f(a,b).$$

f is continuous on a set D in \mathbb{R}^2 (or \mathbb{R}^n) if f is cont. at each point of D.

Exs:

1. $f(x,y,z) = 2$ for all x,y,z real (all pts. (x,y,z) in \mathbb{R}^3). Cont. on \mathbb{R}^3.

2. $g(x,y) = x^2$ for all x,y real (all pts. (x,y) in \mathbb{R}^2) Cont. on \mathbb{R}^2.

3. $k(x,y,z) = x^2 - y^2$ Cont. on \mathbb{R}^3.

General principle: Except in very peculiar cases, functions given by formulas will be cont on domain.

We will use continuity + limits of several variables slightly differently.

We will define $f_x(x,y)$ (or $\frac{\partial f}{\partial x}$ at (x,y)) by fixing y, considering the one variable function $x \mapsto f(x,y)$, and differentiating with respect to x. Similarly for others. This is not really new, but uses one variable limits.

It is possible for $f_x(0,0)$ and $f_y(0,0)$ to exist, but for f to be not even continuous at $(0,0)$! We rule out this case & its consequences by requiring the partial derivatives to be cont.

Upshot (also for other reasons): We need to pay more attention to continuity than in Math 25.

More exs:

1. $f(x,y) = \left\{ \begin{array}{ll} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ \text{undefined} & (x,y) = (0,0) \end{array} \right.$

 This fun is cont. on its domain.

As in one variable, sums, differences, scalar multiples, products of cont. funs are cont.

$$x \mapsto \frac{f(x,y)}{g(x,y)} \quad \text{for } f, g \text{ cont } \implies x \mapsto \text{cont., where the denominator is not zero}$$

Also, if h is a cont. fun of one variable, and f is a cont. fun on D subset of \mathbb{R}^3 (or \mathbb{R}^n), then $(x,y) \mapsto h(f(x,y))$ is cont. in D (if h defined on range of f)

Exs:

1. $g(x,y) = \sin \left(\frac{xy}{x^2 + y^2} \right)$ is continuous on \mathbb{R}^2 except $(0,0)$,

2. $h(x,y) = \ln \left(\frac{x^4 + y^4}{x^2 + y^2} \right) e^{-y^2}$ is continuous on its domain, which is the set of all pairs (x,y) such that $|x| > |y|$.

 (Exactly when $x^2 > y^2$)

(These dotted lines form the boundary, and are not included.)

Every polynomial of several variables is cont. everywhere. Ex: $p(x,y) = 2x^2 + 3y^2 + 29x y - 25 + 8$
Ex of using derivative. Consider a straight road on hilly terrain.

height (elevation) at horizontal position x is \(h(x) \). Picture shows \(z = h(x) \).

\(h'(2) \) is the slope of road at position \(x = 2 \) in ft/mile. If you go 1 mile/hour horizontally (road speed will be a bit higher), then gaining \(h'(2) \) ft/hour as you go through \(x = 2 \).

Consider now moving over hilly terrain in two dimensions. Draw contour (level curves).

Consider \(2,3 \).

Suppose we go east at one mile/hour.

- **Here is elevation changing?**
- **It is increasing, and we can estimate how fast:** a bit less than 100 ft/hour. Maybe about 70?

Suppose we go north instead. We are now going down, at about 70 ft/hour.

For going E: partial derivative in the x direction at \(x = 2 \) and \(y = 3 \) is about 70.

- It is \(\frac{\partial}{\partial x} (h(x, 3)) \) here then at \(x = 2 \).

For going N, partial derivative in the y direction at \(x = 2 \) and \(y = 3 \) is about -70.

- It is \(\frac{\partial}{\partial y} (h(2, y)) \) evaluated at \(y = 3 \).

Notation: \(h_x (x, y) \) (here \(h_x (2, 3) \)) and \(h_y (x, y) \)

Suppose we start at \((2,3) \) and move with velocity vector \(\langle 1, 1 \rangle \). (going NE at \(\sqrt{2} \) mile/hour). If the function is reasonable, then velocity change will be

\(f_x (2,3) \cdot 1 + f_y (2,3) \cdot 1 \approx 0 \) in the picture. (black arrow)

Ex: velocity \(\langle 4,5 \rangle \) (now going roughly NE, a bit more north than east at \(y \) ft/mile/hour). Rate of change of elevation will be \(f_x (2,3) \cdot 4 + f_y (2,3) \cdot 5 \)

- here \(\approx (70)(4) + (-70)(3) = -70 \).

This is an example of the chain rule in several variables. Not enough for the partial derivatives to just exist, enough to require \(f_y, f_z \) to be continuous.
Suppose \(f(x, y) = x + 2y^2 + 3x^2 \).

Let's find \(f_x(4, 5) \). Then \(\frac{df}{dx} f(x, 5) \), evaluated at \(x = 4 \).

\[
f(x, 5) = x + 2(5)^2 + 3x^2.5 = x + 50 + 15x^2
\]

Deriv. \(1 + 30x \), so \(f_x(4, 5) = 1 + 30(4) = 121 \).

What is \(f_y(x, y) \)?