Suppose a function \(f \) of \(n \) variables has a critical point at \(\mathbf{a} = (a_1, a_2, \ldots, a_n) \). There will be a "special direction" associated with this critical point, say the first is the direction in which \(f \) curves up the sharpest; the next sharpest after that direction is removed; I among the directions orthogonal to the first, etc., ending with the direction in which \(f \) curves down the sharpest.

For those who have seen linear algebra: These directions are eigenvectors of the Hessian matrix whose \(i \)-th entry is \(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}) \) (so it's adjoint by Clairaut's Theorem), and the corresponding eigenvalues, which is positive if \(f \) curves up, negative if \(f \) curves down. Here is a local min. if all eigenvalues are \(>0 \), max if all are \(<0 \), and a kind of generalized saddle point if some are strictly positive and some are strictly negative.

The determinant of a matrix is the product of its eigenvalues. In two dimensions, if \(\det(\mathbf{f}) < 0 \), the eigenvalues have opposite signs, so get a saddle point. If \(\det(\mathbf{f}) > 0 \), they have the same sign, so have a local min or max. (No such shortcut even in dimension 3.)

Additional comments: In one variable, \(f'(a) = 0 \) and \(f''(a) \neq 0 \), then \(f \) curves up or down depending on sign of \(f''(a) \). In several variables, \(f \) can do different things in different directions. If \(f \) curves up in all directions, have \(\text{local min} \). If \(f \) curves down in some directions and up in others, have a generalized saddle.

In two variables: One can find direction in which \(f \) curves up, and direction with sharpest curve down (least slope up) \(\left(\text{all both up, or both down, \(-\)} \right) \). Special is two dimensions:

\[
\det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} = \det \begin{bmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{yy}(a,b) \end{bmatrix} = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2
\]

- If \(\det(\mathbf{f}) > 0 \), the both directions curve up or both down \([\text{eigenvalues have same sign}] \), so local min or max. Further cheap trick: if \(f_{xx}(a,b) > 0 \), local min; if \(f_{xx}(a,b) < 0 \), local max.

[Could use \(f_{xy}(a,b) \) instead.]

Continue: If \(\det(\mathbf{f}) < 0 \), get up in one direction, down in another -- saddle pt.
Examples for Monday

Ex 1: \(f(x, y) = x^2 + xy + y^2 + y \), \(D_f(x, y) = 2x + y \), \(D^2 f(x, y) = 1 \), \(D^2 f(x, y) = 2 \). So \(D\left(\frac{1}{3}, -\frac{2}{3}\right) = \text{det}\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = 2(2) - 1^2 = 3 > 0 \)

Since \(D^2 f(x, y) > 0 \), have a local minmum.

Ex 2: \(g(x, y) = y \sin(x) \), \(D_g(x, y) = y \cos(x) \), \(D^2 g(x, y) = \sin(x) \), crit. pts \((n\pi, 0) \) for any integer \(n \).

\(D^2 g(x, y) = -y \sin(x) \), \(D^2 g(x, y) = \cos(x) \), \(D^2 g(x, y) = 0 \).

At \((n\pi, 0) \): \(D^2 g(n\pi, 0) = 0 \), \(D^2 g(x, y) = \cos(n\pi) \), which is \(\pm 1 \) depending on whether \(n \) is even or odd. Look at \(\text{det}\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) or \(\text{det}\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). Both are \(-1\), so all crit. pts are saddle pts.

Ex 3: \(h(x, y) = x^3 - 3x + 3xy^2 \). It had no critical points. (Saddle pts)

Ex 4: \(k(x, y) = x^3 + y^3 \). \(D_k(x, y) = 3x^2 + 3y^2 \), \(D^2 k(x, y) = 3(y^2) \), critical point \((0, 0) \).

\(D^2 k(x, y) = 6x \), \(D^2 k(x, y) = 0 \), \(D^2 k(x, y) = 6y \). At \((0, 0) \), all of these are zero. So \(D(0, 0) = 0 \).

Test gives no conclusion. Here none of local min, local max, or saddle pt. But could have any of these.

Ex 5: \(h(x, y) = x^4 + y^4 - 4xy + 1 \), \(D_1 h(x, y) = 4x^3 - 4y \), \(D_2 h(x, y) = 4y^3 - 4x \). Cost pts \((0, 0) \) \((1, 1) \) \((1, -1) \).

Omit, (Cost saddle pt at \((0, 0) \) and local mins at the other two points.)

Find and classify critical pts.
Blue is low, (about \(-4\)) and
Red is high (about \(4\)).

Critical pts at:
\(-1, 1\) : local min
\(-1, -1\) : local min
\((1, 0)\) : local max
\((1, 1)\) : saddle pt
\((1, -1)\) : saddle pt
\((-1, 0)\) : saddle pt
Homework: Due today 3-4 pm: one person. Next two.

Other times: Tuesday 8:30-9:30 pm

Tomorrow 11 am - noon, 2-3 pm.

Friday

Global min max

Theorem (not here). If f is continuous on a bounded (contains in some ball, does not go off to 0) closed (contains its boundary; like $[a,b]$ in \mathbb{R}) subset D of \mathbb{R}^n, then f has a global min and a global max. on D. If they occur in interior (not on boundary), they must occur at critical points.

Ex: Find points on the cone $z^2 = x^2 + y^2$ closest to $(4,2,0)$.

Want to minimize $\text{dist} \ (x,y,z), (4,2,0) = ||(x,y,z)-(4,2,0)|| \quad \text{subject to } \ z^2 = x^2 + y^2$.

Cheap trick: Minimize $||(-x,y,0)||^2 = x^2 + y^2$ that is, minimize $(x-4)^2 + (y-2)^2 + (z-0)^2$ for $(x,y,z) \in \mathbb{R}$. Domain is not bounded.

The min distance is at most $\text{dist} (0,0,0), (4,2,0) < 6$, so enough to consider $|x| \leq 6, |y| \leq 6$. This is a closed ball domain.

The plan: Find all critical pts of $d(x,y) = (x-4)^2 + (y-2)^2 + x^2 + y^2$, evaluate $d(x,y)$ at each of them, and choose the min with smallest value of $d(x,y)$.

Then solve for z, for each of these.