Generally, a “solution” is something that would be acceptable if turned in in the form presented here, although the solutions given are often close to minimal in this respect. A “solution (sketch)” is too sketchy to be considered a complete solution if turned in; varying amounts of detail would need to be filled in.

Problem 2.2. Prove that the set of algebraic numbers is countable.

Solution. For each fixed integer \(n \geq 0 \), the set \(P_n \) of all polynomials with integer coefficients and degree at most \(n \) is countable, since it has the same cardinality as the set
\[
\{(a_0, \ldots, a_n) : a_0, a_1, \ldots, a_n \in \mathbb{Z} \geq 0\} = (\mathbb{Z} \geq 0)^{n+1}.
\]
The set of all polynomials with integer coefficients is \(\bigcup_{n=0}^{\infty} P_n \), which is a countable union of countable sets and so countable. Each nonzero polynomial has only finitely many roots (at most \(n \) for degree \(n \)), so the set of all possible roots of all nonzero polynomials with integer coefficients is a countable union of finite sets, hence countable. □

Problem 2.3. Prove that there exist real numbers which are not algebraic.

Solution (sketch). This follows from Problem 2.2, since \(\mathbb{R} \) is not countable. □

Problem 2.4. Is \(\mathbb{R} \setminus \mathbb{Q} \) countable?

Solution (sketch). No. The set \(\mathbb{Q} \) is countable and \(\mathbb{R} \) is not countable. □

Problem 2.5. Construct a bounded subset of \(\mathbb{R} \) with exactly 3 limit points.

Solution (sketch). For example, the limit points of the set
\[
E = \{1/n : n \in \mathbb{Z} > 0\} \cup \{1 + 1/n : n \in \mathbb{Z} > 0\} \cup \{2 + 1/n : n \in \mathbb{Z} > 0\}
\]
are 0, 1, and 2. □

A correct solution includes a proof that 0, 1, and 2 are limit points of \(E \), and also a proof that \(E \) has no other limit points.

Problem 2.6. For a metric space \(X \) and a subset \(E \subset X \), let \(E' \) denote the set of limit points of \(E \).

1. Prove that \(E' \) is closed.
2. Prove that \((E')' = E' \).
3. Is \((E')' \) always equal to \(E' \)?

Solution to (1). We claim that \((E')' \subset E' \). To prove the claim, let \(x \in (E')' \) and let \(\varepsilon > 0 \). By the definition of \((E')' \), there is \(y \in E' \cap (N_{\varepsilon}(x) \setminus \{x\}) \). Define
\[
\delta = \min\{d(x, y), \varepsilon - d(x, y)\}.
\]

Date: 8 October 2018.
Then $\delta > 0$. By the definition of E', there is $z \in E \cap (N_\delta(y) \setminus \{y\})$. Then
\[d(z, y) < \delta \leq d(x, y), \]
so $z \neq x$. Also,
\[d(z, x) \leq d(z, y) + d(y, x) < \delta + d(y, x) \leq (\varepsilon - d(x, y)) + d(x, y) = \varepsilon, \]
so $z \in N_\varepsilon(x)$. This completes the proof of the claim.

The claim implies that all limit points of E' are in E', so E' is closed. \square

Here is a different way to prove that $(E')' \subset E'$.

Alternate solution to (1) (sketch). Let $x \in (E')'$ and let $\varepsilon > 0$. By definition, there is a point $y \in E' \cap (N_{\varepsilon/2}(x) \setminus \{x\})$. By Theorem 2.20 of Rudin, there are infinitely many points in $E \cap (N_{\varepsilon/2}(y) \setminus \{y\})$. In particular there is a point $z \in E \cap (N_{\varepsilon/2}(y) \setminus \{y\})$ with $z \neq x$. Now $z \in E \cap (N_\varepsilon(x) \setminus \{x\})$

Finish as in the first solution. \square

Solution to (2). We first claim that if A and B are any subsets of X, then $(A \cup B)' \subset A' \cup B'$. The fastest way to prove the claim is to assume that $x \in (A \cup B)'$ but $x \notin A'$, and to show that $x \notin B'$. Accordingly, let $x \in (A \cup B)' \setminus A'$. Since $x \notin A'$, there is $\varepsilon_0 > 0$ such that $N_{\varepsilon_0}(x) \cap A \subset \{x\}$.

Now let $\varepsilon > 0$; we show that $N_\varepsilon(x) \cap B$ contains at least one point different from x. To do so, set $r = \min(\varepsilon, \varepsilon_0) > 0$. Because $x \in (A \cup B)'$, there is $y \in N_r(x) \cap (A \cup B)$ with $y \neq x$. Then $y \notin A$ because $r \leq \varepsilon_0$. So necessarily $y \in B$. We have shown that $N_\varepsilon(x) \cap B$ contains at least one point, namely y, which is different from x.

The previous paragraph shows that $x \in B'$, and completes the proof of the claim.

We also claim that if $A \subset B \subset X$ then $A' \subset B'$. The proof of this claim is obvious, since if $N_\varepsilon(x) \cap (A \setminus \{x\}) \neq \emptyset$, then certainly $N_\varepsilon(x) \cap (B \setminus \{x\}) \neq \emptyset$.

We now prove that $(E)' \subset E'$. Using the first claim at the second step and $(E)' \subset E'$ (proved in the proof of Part (2)) at the third step, we have
\[(E)' = (E \cup E)' \subset E' \cup (E')' \subset E' \cup E' = E', \]
as desired. The inclusion $E' \subset (E)'$ follows from the second claim. \square

Alternate solution to (2) (sketch). An alternate proof that $(E)' \subset E'$ can be obtained by slightly modifying either of the proofs above that $(E)' \subset E'$. \square

Solution to (3). The answer is no. Take
\[E = \{0\} \cup \left\{ \frac{1}{n} : n \in \mathbb{Z}_{>0} \right\}. \]
Then $E' = \{0\}$ and $(E)' = \emptyset$. (Of course, you must prove these facts.) \square

Problem 2.8. If $E \subset \mathbb{R}^2$ is open, is every point of E a limit point of E? What if E is closed instead of open?

Solution (sketch). Every point of an open set $E \subset \mathbb{R}^2$ is a limit point of E. Indeed, if $x \in E$, then there is $\varepsilon > 0$ such that $N_\varepsilon(x) \subset E$, and it is easy to show that x is a limit point of $N_\varepsilon(x)$.

Not every point of a closed set need be a limit point. Take $E = \{(0,0)\}$, which has no limit points. \square
Warning: in a general metric space, it need not be true that every point in an open set is a limit point of that set.

Problem 2.9. For a metric space X and a subset $E \subset X$, let E° denote the set of interior points of a set E, that is, the interior of E.

1. Prove that E° is open.
2. Prove that E is open if and only if $E^\circ = E$.
3. If G is open and $G \subset E$, prove that $G \subset E^\circ$.
4. Prove that $X \setminus E^\circ = X \setminus E$.
5. Prove or disprove: $(E^\circ)^\circ = E^\circ$.
6. Prove or disprove: $\overline{E^\circ} = \overline{E}$.

Solution to (1). Let $x \in E^\circ$. Then there is $\epsilon > 0$ such that $N_\epsilon(x) \subset E$.

We claim that $N_\epsilon(x) \subset E^\circ$. To prove the claim, let $y \in N_\epsilon(x)$. Since $N_\epsilon(x)$ is open, there is $\delta > 0$ such that $N_\delta(y) \subset N_\epsilon(x)$. So $N_\delta(y) \subset E$. This shows that $y \in E^\circ$, proving the claim.

We have shown that for every $x \in E^\circ$ there is $\epsilon > 0$ such that $N_\epsilon(x) \subset E^\circ$. That is, E° is open. □

Solution to (2). If E is open, then $E = E^\circ$ by the definition of E°. If $E = E^\circ$, then E is open by Part (a). □

Solution to (3) (sketch). We first claim that if $A \subset B \subset X$, then $A^\circ \subset B^\circ$. To prove the claim, let $x \in A^\circ$. By definition, there is $\epsilon > 0$ such that $N_\epsilon(x) \subset A$. Then also $N_\epsilon(x) \subset B$, so $x \in B^\circ$. The claim is proved.

Now let $G \subset X$ be an open set such that $G \subset E$. Using (2) at the first step and the claim at the second step, we have

$$G = G^\circ \subset E^\circ,$$

as desired. □

Solution to (4) (sketch). First show that $X \setminus E^\circ \subset X \setminus E$. If $x \notin E$, then clearly $x \in X \setminus E$. Otherwise, consider $x \in E \setminus E^\circ$. Rearranging the statement that x fails to be an interior point of E, and noting that x itself is not in $X \setminus E$, one gets exactly the statement that x is a limit point of $X \setminus E$.

Now show that $X \setminus E \subset X \setminus E^\circ$. If $x \in X \setminus E$, then clearly $x \notin E^\circ$. If $x \notin X \setminus E$ but x is a limit point of $X \setminus E$, then one simply rearranges the definition of a limit point to show that x is not an interior point of E. □

Solution to (5) (sketch). This is false. Example: take $X = \mathbb{R}$ and $E = (0, 1) \cup (1, 2)$. We have $E^\circ = E$, $\overline{E} = [0, 2]$, and $(\overline{E})^\circ = (0, 2)$. □

Alternate solution to (5) (sketch). This is false. Example: take $X = \mathbb{R}$ and $E = \mathbb{Q}$. We have $E^\circ = \emptyset$, $\overline{E} = \mathbb{R}$, and $(\overline{E})^\circ = \mathbb{R}$. □

Solution to (6) (sketch). This is false. Example: take $X = \mathbb{R}$ and $E = (0, 1) \cup \{2\}$. Then $\overline{E} = [0, 1] \cup \{2\}$, $E^\circ = (0, 1)$, and $\overline{E^\circ} = [0, 1]$. □

Alternate solution to (6) (sketch). This is false. Example: take $X = \mathbb{R}$ and $E = \mathbb{Q}$. Then $\overline{E} = \mathbb{R}$, $E^\circ = \emptyset$, and $\overline{E^\circ} = \emptyset$. □

Second alternate solution to (6) (sketch). This is false. Example: take $X = \mathbb{R}$ and $E = \{0\}$. Then $\overline{E} = \{0\}$, $E^\circ = \emptyset$, and $\overline{E^\circ} = \emptyset$. □
Problem 2.11. Which of the following are metrics on \mathbb{R}?

1. $d_1(x, y) = (x - y)^2$ for $x, y \in \mathbb{R}$.
2. $d_2(x, y) = \sqrt{|x - y|}$ for $x, y \in \mathbb{R}$.
3. $d_3(x, y) = |x^2 - y^2|$ for $x, y \in \mathbb{R}$.
4. $d_4(x, y) = |x - 2y|$ for $x, y \in \mathbb{R}$.
5. $d_5(x, y) = \frac{|x - y|}{1 + |x - y|}$ for $x, y \in \mathbb{R}$.

Solution to (1) (sketch). No. The triangle inequality fails with $x = 0$, $y = 2$, and $z = 4$.

Solution to (2) (sketch). Yes. Some work is needed to check the triangle inequality.

Solution to (3) (sketch). No. We have $d_3(1, -1) = 0$.

Solution to (4) (sketch). No. We have $d_4(1, 1) \neq 0$.

Alternate solution to (4) (sketch). No. We have $d_4(1, 6) \neq d_4(6, 1)$.

Solution to (5). Yes.

It is obvious that $d(x, y) \geq 0$ for all $x, y \in \mathbb{R}$ and that $d(x, y) = 0$ if and only if $x = y$. It is also obvious that $d(x, y) = d(y, x)$ for all $x, y \in \mathbb{R}$.

It remains to prove the triangle inequality.

We first claim that the function $t \mapsto \frac{t}{1 + t}$ is nondecreasing on $[0, \infty)$. To prove the claim, let $s, t \in \mathbb{R}$ satisfy $0 \leq s \leq t$. Then

$$\frac{t}{1 + t} - \frac{s}{1 + s} = \frac{t(1 + s) - s(1 + t)}{(1 + t)(1 + s)} = \frac{t - s}{(1 + t)(1 + s)} \geq 0.$$

This proves the claim.

We next claim that if $a, b \in [0, \infty)$ then

$$\frac{a + b}{1 + a + b} \leq \frac{a}{1 + a} + \frac{b}{1 + b}.$$

To prove the claim, we calculate:

$$\frac{a + b}{1 + a + b} = \frac{a}{1 + a + b} + \frac{b}{1 + a + b} \leq \frac{a}{1 + a} + \frac{b}{1 + b}.$$

The claim is proved.

Now let $x, y, z \in \mathbb{R}$. Then, using $|x - z| \leq |x - y| + |y - z|$ and the first claim at the second step and using the second claim at the third step,

$$d_5(x, z) = \frac{|x - z|}{1 + |x - z|} \leq \frac{|x - y| + |y - z|}{1 + |x - y| + |y - z|} \leq \frac{|x - y|}{1 + |x - y|} + \frac{|y - z|}{1 + |y - z|} = d_5(x, y) + d_5(y, z).$$

This completes the solution.

The proof given is easier than what most people did the last time I assigned this problem.

The first claim can also be proved using elementary calculus. This method isn’t really legitimate because we haven’t done any calculus yet.