
MATH 413 [513] (PHILLIPS) SOLUTIONS TO HOMEWORK 2

Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 2.2. Prove that the set of algebraic numbers is countable.

Solution. For each fixed integer n ≥ 0, the set Pn of all polynomials with integer
coefficients and degree at most n is countable, since it has the same cardinality as
the set {

(a0, . . . , an) : a0, a1, . . . , an ∈ Z≥0
}

= (Z≥0)n+1.

The set of all polynomials with integer coefficients is
⋃∞
n=0 Pn, which is a count-

able union of countable sets and so countable. Each nonzero polynomial has only
finitely many roots (at most n for degree n), so the set of all possible roots of all
nonzero polynomials with integer coefficients is a countable union of finite sets,
hence countable. �

Problem 2.3. Prove that there exist real numbers which are not algebraic.

Solution (sketch). This follows from Problem 2.2, since R is not countable. �

Problem 2.4. Is R \Q countable?

Solution (sketch). No. The set Q is countable and R is not countable. �

Problem 2.5. Construct a bounded subset of R with exactly 3 limit points.

Solution (sketch). For example, the limit points of the set

E =
{

1
n : n ∈ Z>0

}
∪
{

1 + 1
n : n ∈ Z>0

}
∪
{

2 + 1
n : n ∈ Z>0

}
are 0, 1, and 2. �

A correct solution includes a proof that 0, 1, and 2 are limit points of E, and
also a proof that E has no other limit points.

Problem 2.6. For a metric space X and a subset E ⊂ X, let E′ denote the set of
limit points of E.

(1) Prove that E′ is closed.

(2) Prove that
(
E
)′

= E′.
(3) Is (E′)′ always equal to E′?

Solution to (1). We claim that (E′)′ ⊂ E′. To prove the claim, let x ∈ (E′)′ and
let ε > 0. By the definition of (E′)′, there is y ∈ E′ ∩ (Nε(x) \ {x}). Define

δ = min
(
d(x, y), ε− d(x, y)

)
.
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Then δ > 0. By the definition of E′, there is z ∈ E ∩ (Nδ(y) \ {y}). Then

d(z, y) < δ ≤ d(x, y),

so z 6= x. Also,

d(z, x) ≤ d(z, y) + d(y, x) < δ + d(y, x) ≤ (ε− d(x, y)) + d(x, y) = ε,

so z ∈ Nε(x). This completes the proof of the claim.
The claim implies that all limit points of E′ are in E′, so E′ is closed. �

Here is a different way to prove that (E′)′ ⊂ E′.

Alternate solution to (1) (sketch). Let x ∈ (E′)′ and let ε > 0. By definition,
there is a point y ∈ E′ ∩ (Nε/2(x) \ {x}). By Theorem 2.20 of Rudin, there are
infinitely many points in E ∩ (Nε/2(y) \ {y}). In particular there is a point z ∈
E ∩ (Nε/2(y) \ {y}) with z 6= x. Now z ∈ E ∩ (Nε(x) \ {x}).

Finish as in the first solution. �

Solution to (2). We first claim that if A and B are any subsets of X, then (A∪B)′ ⊂
A′ ∪ B′. The fastest way to prove the claim is to assume that x ∈ (A ∪ B)′ but
x 6∈ A′, and to show that x ∈ B′. Accordingly, let x ∈ (A ∪B)′ \A′. Since x 6∈ A′,
there is ε0 > 0 such that Nε0(x) ∩A ⊂ {x}.

Now let ε > 0; we show thatNε(x)∩B contains at least one point different from x.
To do so, set r = min(ε, ε0) > 0. Because x ∈ (A∪B)′, there is y ∈ Nr(x)∩(A∪B)
with y 6= x. Then y 6∈ A because r ≤ ε0. So necessarily y ∈ B. We have shown
that Nε(x) ∩B contains at least one point, namely y, which is different from x.

The previous paragraph shows that x ∈ B′, and completes the proof of the claim.
We also claim that if A ⊂ B ⊂ X then A′ ⊂ B′. The proof of this claim is

obvious, since if Nε(x) ∩ (A \ {x}) 6= ∅, then certainly Nε(x) ∩ (B \ {x}) 6= ∅.

We now prove that
(
E
)′ ⊂ E′. Using the first claim at the second step and

(E′)′ ⊂ E′ (proved in the proof of Part (2)) at the third step, we have(
E
)′

= (E ∪ E′)′ ⊂ E′ ∪ (E′)′ ⊂ E′ ∪ E′ = E′,

as desired. The inclusion E′ ⊂
(
E
)′

follows from the second claim. �

Alternate solution to (2) (sketch). An alternate proof that
(
E
)′ ⊂ E′ can be ob-

tained by slightly modifying either of the proofs above that (E′)′ ⊂ E′. �

Solution to (3). The answer is no. Take

E = {0} ∪
{

1
n : n ∈ Z>0

}
.

Then E′ = {0} and (E′)′ = ∅. (Of course, you must prove these facts.) �

Problem 2.8. If E ⊂ R2 is open, is every point of E a limit point of E? What if
E is closed instead of open?

Solution (sketch). Every point of an open set E ⊂ R2 is a limit point of E. Indeed,
if x ∈ E, then there is ε > 0 such that Nε(x) ⊂ E, and it is easy to show that x is
a limit point of Nε(x).

Not every point of a closed set need be a limit point. Take E = {(0, 0)}, which
has no limit points. �
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Warning: in a general metric space, it need not be true that every point in an
open set is a limit point of that set.

Problem 2.9. For a metric space X and a subset E ⊂ X, let E◦ denote the set of
interior points of a set E, that is, the interior of E.

(1) Prove that E◦ is open.
(2) Prove that E is open if and only if E◦ = E.
(3) If G is open and G ⊂ E, prove that G ⊂ E◦.
(4) Prove that X \ E◦ = X \ E.

(5) Prove or disprove:
(
E
)◦

= E◦.

(6) Prove or disprove: E◦ = E.

Solution to (1). Let x ∈ E◦. Then there is ε > 0 such that Nε(x) ⊂ E.
We claim that Nε(x) ⊂ E◦. To prove the claim, let y ∈ Nε(x). Since Nε(x) is

open, there is δ > 0 such that Nδ(y) ⊂ Nε(x). So Nδ(y) ⊂ E. This shows that
y ∈ E◦, proving the claim.

We have shown that for every x ∈ E◦ there is ε > 0 such that Nε(x) ⊂ E◦. That
is, E◦ is open. �

Solution to (2). If E is open, then E = E◦ by the definition of E◦. If E = E◦,
then E is open by Part (a). �

Solution to (3) (sketch). We first claim that if A ⊂ B ⊂ X, then A◦ ⊂ B◦. To
prove the claim, let x ∈ A◦. By definition, there is ε > 0 such that Nε(x) ⊂ A.
Then also Nε(x) ⊂ B, so x ∈ B◦. The claim is proved.

Now let G ⊂ X be an open set such that G ⊂ E. Using (2) at the first step and
the claim at the second step, we have

G = G◦ ⊂ E◦,
as desired. �

Solution to (4) (sketch). First show that X \ E◦ ⊂ X \ E. If x 6∈ E, then clearly

x ∈ X \ E. Otherwise, consider x ∈ E \ E◦. Rearranging the statement that x
fails to be an interior point of E, and noting that x itself is not in X \E, one gets
exactly the statement that x is a limit point of X \ E.

Now show that X \ E ⊂ X \E◦. If x ∈ X \E, then clearly x 6∈ E◦. If x 6∈ X \E
but x is a limit point of X \E, then one simply rearranges the definition of a limit
point to show that x is not an interior point of E. �

Solution to (5) (sketch). This is false. Example: take X = R and E = (0, 1)∪(1, 2).

We have E◦ = E, E = [0, 2], and
(
E
)◦

= (0, 2). �

Alternate solution to (5) (sketch). This is false. Example: take X = R and E = Q.

We have E◦ = ∅, E = R, and
(
E
)◦

= R. �

Solution to (6) (sketch). This is false. Example: take X = R and E = (0, 1)∪ {2}.
Then E = [0, 1] ∪ {2}, E◦ = (0, 1), and E◦ = [0, 1]. �

Alternate solution to (6) (sketch). This is false. Example: take X = R and E = Q.
Then E = R, E◦ = ∅, and E◦ = ∅. �

Second alternate solution to (6) (sketch). This is false. Example: take X = R and
E = {0}. Then E = {0}, E◦ = ∅, and E◦ = ∅. �
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Problem 2.11. Which of the following are metrics on R?

(1) d1(x, y) = (x− y)2 for x, y ∈ R.

(2) d2(x, y) =
√
|x− y| for x, y ∈ R.

(3) d3(x, y) = |x2 − y2| for x, y ∈ R.
(4) d4(x, y) = |x− 2y| for x, y ∈ R.

(5) d5(x, y) =
|x− y|

1 + |x− y|
for x, y ∈ R.

Solution to (1) (sketch). No. The triangle inequality fails with x = 0, y = 2, and
z = 4. �

Solution to (2) (sketch). Yes. Some work is needed to check the triangle inequality.
�

Solution to (3) (sketch). No. We have d3(1,−1) = 0. �

Solution to (4) (sketch). No. We have d4(1, 1) 6= 0. �

Alternate solution to (4) (sketch). No. We have d4(1, 6) 6= d4(6, 1). �

Solution to (5). Yes.
It is obvious that d(x, y) ≥ 0 for all x, y ∈ R and that d(x, y) = 0 if and only if

x = y. It is also obvious that d(x, y) = d(y, x) for all x, y ∈ R.
It remains to prove the triangle inequality.
We first claim that the function t 7→ t

1+t is nondecreasing on [0,∞). To prove
the claim, let s, t ∈ R satisfy 0 ≤ s ≤ t. Then

t

1 + t
− s

1 + s
=
t(1 + s)− s(1 + t)

(1 + t)(1 + s)
=

t− s
(1 + t)(1 + s)

≥ 0.

This proves the claim.
We next claim that if a, b ∈ [0,∞) then

a+ b

1 + a+ b
≤ a

1 + a
+

b

1 + b
.

To prove the claim, we calculate:

a+ b

1 + a+ b
=

a

1 + a+ b
+

b

1 + a+ b
≤ a

1 + a
+

b

1 + b
.

The claim is proved.
Now let x, y, z ∈ R. Then, using |x− z| ≤ |x− y|+ |y− z| and the first claim at

the second step and using the second claim at the third step,

d5(x, z) =
|x− z|

1 + |x− z|
≤ |x− y|+ |y − z|

1 + |x− y|+ |y − z|

≤ |x− y|
1 + |x− y|

+
|y − z|

1 + |y − z|
= d5(x, y) + d5(y, z).

This completes the solution. �

The proof given is easier than what most people did the last time I assigned this
problem.

The first claim can also be proved using elementary calculus. This method isn’t
really legitimate because we haven’t done any calculus yet.


