MATH 413 [513] (PHILLIPS) SOLUTIONS TO HOMEWORK 2

Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 2.2. Prove that the set of algebraic numbers is countable.

Solution. For each fixed integer n > 0, the set P, of all polynomials with integer
coeflicients and degree at most n is countable, since it has the same cardinality as
the set
{(ao, e an): ag,A1,...,0y € Zzo} = (Zzo)n+1.

The set of all polynomials with integer coefficients is |J;-, Py, which is a count-
able union of countable sets and so countable. Each nonzero polynomial has only
finitely many roots (at most n for degree n), so the set of all possible roots of all
nonzero polynomials with integer coefficients is a countable union of finite sets,
hence countable. O

Problem 2.3. Prove that there exist real numbers which are not algebraic.

Solution (sketch). This follows from Problem 2.2, since R is not countable. O

Problem 2.4. Is R\ Q countable?

Solution (sketch). No. The set Q is countable and R is not countable. (]

Problem 2.5. Construct a bounded subset of R with exactly 3 limit points.

Solution (sketch). For example, the limit points of the set
E={tineZyojUu{l+Lt:ineZo}U{2++:n€eZso}

are 0, 1, and 2. O

A correct solution includes a proof that 0, 1, and 2 are limit points of E, and
also a proof that E has no other limit points.

Problem 2.6. For a metric space X and a subset £ C X, let E’ denote the set of
limit points of F.

(1) Prove that E’ is closed.

(2) Prove that (E) = E.

(3) Is (B') always equal to E’?

Solution to (1). We claim that (E’)" C E’. To prove the claim, let € (E’)" and
let € > 0. By the definition of (E')’, there is y € E' N (N.(x) \ {z}). Define

§ = min(d(z,y), € — d(z,y)).
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Then 6 > 0. By the definition of E’, there is z € EN (Ns(y) \ {y}). Then
d(z,y) < <d(x,y),
so z # x. Also,
d(z,z) < d(z,y) +d(y,z) < d+d(y,z) < (e —d(z,y)) + d(z,y) =&,

s0 z € N.(z). This completes the proof of the claim.
The claim implies that all limit points of £ are in E’, so E’ is closed. O

Here is a different way to prove that (E') C F'.

Alternate solution to (1) (sketch). Let x € (E') and let ¢ > 0. By definition,
there is a point y € E' N (N./2(z) \ {z}). By Theorem 2.20 of Rudin, there are
infinitely many points in £ N (Ng/2(y) \ {y}). In particular there is a point z €
EnN(Nejo(y) \{y}) with z # z. Now z € EN (N (x) \ {z}).

Finish as in the first solution. (]

Solution to (2). We first claim that if A and B are any subsets of X, then (AUB)" C
A" U B'. The fastest way to prove the claim is to assume that x € (AU B)’ but
x ¢ A’ and to show that x € B’. Accordingly, let x € (AU B)' \ A’. Since x ¢ A’,
there is g9 > 0 such that N.,(z) N A C {z}.

Now let € > 0; we show that N.(x)NB contains at least one point different from .
To do so, set 7 = min(e, €g) > 0. Because x € (AUB)’, thereisy € N, (z)N(AUB)
with y # x. Then y ¢ A because r < £p. So necessarily y € B. We have shown
that N.(z) N B contains at least one point, namely y, which is different from x.

The previous paragraph shows that € B’, and completes the proof of the claim.

We also claim that if A € B C X then A’ € B’. The proof of this claim is
obvious, since if N.(z) N (A\ {z}) # @, then certainly N.(z) N (B\ {z}) # 2.

We now prove that (E)/ C E’. Using the first claim at the second step and
(E") C E' (proved in the proof of Part (2)) at the third step, we have

() =(EUE)Y CE U(E)Y CEUE =F,
as desired. The inclusion E' C (E)/ follows from the second claim. O

Alternate solution to (2) (sketch). An alternate proof that (E)/ C E' can be ob-
tained by slightly modifying either of the proofs above that (E’) C E'. O

Solution to (3). The answer is no. Take
E={0yU{t:neZs}.
Then E' = {0} and (E’)’ = @. (Of course, you must prove these facts.) O

Problem 2.8. If E C R? is open, is every point of E a limit point of E? What if
E is closed instead of open?

Solution (sketch). Every point of an open set E C R? is a limit point of E. Indeed,
if x € E, then there is € > 0 such that N.(x) C E, and it is easy to show that x is
a limit point of N.(x).

Not every point of a closed set need be a limit point. Take E = {(0,0)}, which
has no limit points. [
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Warning: in a general metric space, it need not be true that every point in an
open set is a limit point of that set.

Problem 2.9. For a metric space X and a subset £ C X, let E° denote the set of
interior points of a set E, that is, the interior of E.

(1) Prove that E° is open.
(2) Prove that E is open if and only if E° = F.
(3) If G is open and G C E, prove that G C E°.
(4) Prove that X \ E° = X \ E.
(5) Prove or disprove: (E)O = FE°.
(6) Prove or disprove: E° = E.

Solution to (1). Let x € E°. Then there is € > 0 such that N.(z) C E.

We claim that N.(z) C E°. To prove the claim, let y € N.(x). Since N(z) is
open, there is § > 0 such that Ns(y) C No(x). So Ns(y) C E. This shows that
y € E°, proving the claim.

We have shown that for every x € E° there is € > 0 such that N.(z) C E°. That

is, E° is open. O
Solution to (2). If E is open, then E = E° by the definition of E°. If E = E°,
then E is open by Part (a). O

Solution to (8) (sketch). We first claim that if A C B C X, then A° C B°. To
prove the claim, let € A°. By definition, there is € > 0 such that N.(z) C A.
Then also N.(z) C B, so € B°. The claim is proved.

Now let G C X be an open set such that G C E. Using (2) at the first step and
the claim at the second step, we have

G=G°CE"°,
as desired. O

Solution to (4) (sketch). First show that X \ E° C X \ E. If z ¢ E, then clearly
x € X\ E. Otherwise, consider x € E\ E°. Rearranging the statement that x
fails to be an interior point of F, and noting that x itself is not in X \ F, one gets
exactly the statement that x is a limit point of X \ E.

Now show that X \ B C X\ E°. If v € X\ E, then clearly « ¢ E°. If t ¢ X\ E
but z is a limit point of X \ F, then one simply rearranges the definition of a limit

point to show that x is not an interior point of E. (I
Solution to (5) (sketch). This is false. Example: take X = Rand F = (0,1)U(1,2).
We have E° = E, E = [0,2], and (E)° = (0,2). O
Alternate solution to (5) (sketch). This is false. Example: take X = R and E = Q.
We have £° = @, E=R, and (E)° =R O
Solution to (6) (sketch). This is false. Example: take X = R and E = (0,1) U {2}.
Then E = [0,1] U {2}, E° = (0,1), and E° = [0,1]. O
Alternate solution to (6) (sketch). This is false. Example: take X = R and E = Q.
Then F =R, E° =@, and E° = @. ([

Second alternate solution to (6) (sketch). This is false. Example: take X = R and
E ={0}. Then E = {0}, E° = @, and E° = &. O
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Problem 2.11. Which of the following are metrics on R?

(1) di(z,y) = (x —y)? for z,y € R.

(2) d2(z7y) =V |.’,E - y| for T,y € R.

(3) ds(z,y) = |2? — y?| for z,y € R.

(4) da(z,y) = |z — 2y| for z,y € R.

|z —

5) d = ——f R.

() 5($7y) 1+|x_y| or x,y €
Solution to (1) (sketch). No. The triangle inequality fails with x = 0, y = 2, and
z=4. ]

Solution to (2) (sketch). Yes. Some work is needed to check the triangle inequality.
O

Solution to (3) (sketch). No. We have d3(1,—1) = 0. O
Solution to (4) (sketch). No. We have d4(1,1) # 0. O
Alternate solution to (4) (sketch). No. We have dy(1,6) # da(6,1). O

Solution to (5). Yes.

It is obvious that d(x,y) > 0 for all z,y € R and that d(z,y) = 0 if and only if
x =y. It is also obvious that d(z,y) = d(y, ) for all x,y € R.

It remains to prove the triangle inequality.

We first claim that the function ¢ — - is nondecreasing on [0,0). To prove

T+
the claim, let s,t € R satisfy 0 < s <¢. Then
t s t(l4+s)—s(14t) t—s >0
I+t 1+s  (I+H(1+s)  (1+t)(1+s) ~

This proves the claim.
We next claim that if a,b € [0, 00) then
a+b < @ n b .
14a+b~ 14+a 1+0D
To prove the claim, we calculate:
a+b a b a b
= + < + .
l4a+b 14a+bdb 14a+bdb~14a 140D
The claim is proved.
Now let z,y,z € R. Then, using |z — z| < |z — y| + |y — 2| and the first claim at
the second step and using the second claim at the third step,

d5(1‘,2’): |’J}*Z| < |{137y‘+|y72|
IL+lz—z ~ 1+|z—yl+|y—=2
|z —yl ly — 2|
=ds(x,y) + ds(y, 2).
S Py A 5(2,y) + ds(y, 2)
This completes the solution. (Il

The proof given is easier than what most people did the last time I assigned this
problem.

The first claim can also be proved using elementary calculus. This method isn’t
really legitimate because we haven’t done any calculus yet.



