Problem 5.1: Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that

$$|f(x) - f(y)| \leq (x - y)^2$$

for all $x, y \in \mathbb{R}$. Prove that f is constant.

Solution. We first prove that $f'(x) = 0$ for all $x \in \mathbb{R}$. For $h \in \mathbb{R} \setminus \{0\}$, we have

$$\left| \frac{f(x + h) - f(x)}{h} \right| = \frac{|f(x + h) - f(x)|}{|h|} \leq \frac{|h|^2}{|h|} = |h|.$$

It follows immediately that

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = 0.$$

Since this is true for all $x \in \mathbb{R}$, it now follows from Theorem 5.11(b) of Rudin’s book that f is constant.

The solution above is the intended solution. However, there is another solution which is nearly as easy and does not use calculus.

Alternate solution. Let $x, y \in \mathbb{R}$ and let $\varepsilon > 0$; we prove that $|f(x) - f(y)| < \varepsilon$. It will clearly follow that f is constant.

Choose $N \in \mathbb{Z}_{>0}$ with $N > \varepsilon^{-1}(x - y)^2$. The hypothesis implies that, for any k, we have

$$|f \left(x + (k - 1) \cdot \frac{1}{N} (y - x) \right) - f \left(x + k \cdot \frac{1}{N} (y - x) \right) | \leq \left(\frac{1}{N} \right)^2 \left(\frac{(y - x)^2}{N} \right) < \frac{1}{N} \cdot \varepsilon.$$

Therefore

$$|f(x) - f(y)| \leq \sum_{k=1}^{N} |f \left(x + (k - 1) \cdot \frac{1}{N} (y - x) \right) - f \left(x + k \cdot \frac{1}{N} (y - x) \right) | < N \cdot \frac{1}{N} \cdot \varepsilon = \varepsilon.$$

This completes the solution.

Problem 5.2: Let \(f: (a, b) \to \mathbb{R} \) satisfy \(f'(x) > 0 \) for all \(x \in (a, b) \). Prove that \(f \) is strictly increasing, that its inverse function \(g \) is differentiable, and that

\[
g'(f(x)) = \frac{1}{f'(x)}
\]

for all \(x \in (a, b) \).

Solution. That \(f \) is strictly increasing on \((a, b)\) follows from the Mean Value Theorem and the fact that \(f'(x) > 0 \) for all \(x \in (a, b) \).

Define

\[c = \inf_{x \in (a, b)} f(x) \quad \text{and} \quad d = \sup_{x \in (a, b)} f(x). \]

(Note that \(c \) could be \(-\infty\) and \(d \) could be \(\infty\).) Our next step is to prove that \(f \) is a bijection from \((a, b)\) to \((c, d)\). Clearly \(f \) is injective, and has range contained in \([c, d]\). If \(c = f(x) \) for some \(x \in (a, b) \), then there is \(q \in (a, b) \) with \(q < x \). This would imply \(f(q) < c \), contradicting the definition of \(c \). So \(c \) is not in the range of \(f \). Similarly \(d \) is not in the range of \(f \). So the range of \(f \) is contained in \((c, d)\). For surjectivity, let \(y_0 \in (c, d) \). By the definitions of \(\inf \) and \(\sup \), there are \(r, s \in (a, b) \) such that \(f(r) < y_0 < f(s) \). Clearly \(r < s \). The Intermediate Value Theorem provides \(x_0 \in (r, s) \) such that \(f(x_0) = y_0 \). This shows that the range of \(f \) is all of \((c, d)\), and completes the proof that \(f \) is a bijection from \((a, b)\) to \((c, d)\).

Now we show that \(g: (c, d) \to (a, b) \) is continuous. Again, let \(y_0 \in (c, d) \), and choose \(r \) and \(s \) as in the previous paragraph. Since \(f \) is strictly increasing, and again using the Intermediate Value Theorem, we see that \(f|_{[r,s]} \) is a continuous bijection from \([r, s]\) to \([f(r), f(s)]\). Since \([r, s]\) is compact, the function \((f|_{[r,s]})^{-1} = g|_{f(r), f(s)}\) is continuous. Since \(y_0 \in (f(r), f(s)) \), it follows that \(g \) is continuous at \(y_0 \). Thus \(g \) is continuous.

Now we find \(g' \). Fix \(x_0 \in (a, b) \), and set \(y_0 = f(x_0) \). For \(y \in (c, d) \setminus \{y_0\} \), we write

\[
\frac{g(y) - g(y_0)}{y - y_0} = \left(\frac{f(g(y)) - f(x_0)}{g(y) - x_0} \right)^{-1}.
\]

(Note that \(g(y) \neq x_0 \) because \(g \) is injective.) Since \(g \) is continuous, we have \(\lim_{y \to y_0} g(y) = x_0 \). Therefore

\[
\lim_{y \to y_0} \frac{f(g(y)) - f(x_0)}{g(y) - x_0} = f'(x_0).
\]

Hence

\[
\lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = \frac{1}{f'(x_0)}.
\]

That is, \(g'(y_0) \) exists and is equal to \(\frac{1}{f'(x_0)} \), as desired.

I believe, but have not checked, that further use of the Intermediate Value Theorem can be substituted for the use of compactness in the proof that \(g \) is continuous.

Problem 5.3: Let \(g: \mathbb{R} \to \mathbb{R} \) be a differentiable function such that \(g' \) is bounded. Prove that there is \(r > 0 \) such that for all \(\varepsilon \in (0, r) \), the function \(f(x) = x + \varepsilon g(x) \) is injective.
Solution. Set $M = \max\{0, \sup_{x \in \mathbb{R}} [-g'(x)]\}$. Set $r = \frac{1}{M}$. (Take $r = \infty$ if $M = 0$.) Suppose $0 < \varepsilon < r$, and define $f(x) = x + \varepsilon g(x)$ for $x \in \mathbb{R}$. For $x \in \mathbb{R}$, we have

$$f'(x) = 1 + \varepsilon g'(x) = 1 - \varepsilon(-g'(x)) \geq 1 - \varepsilon M > 1 - rM = 0$$

(except that $1 - rM = 1$ if $M = 0$). Thus $f'(x) > 0$ for all x, so the Mean Value Theorem implies that f is strictly increasing. In particular, f is injective. \hfill \Box

Problem 5.4: Let $C_0, C_1, \ldots, C_n \in \mathbb{R}$. Suppose

$$C_0 + \frac{C_1}{2} + \cdots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0.$$

Prove that the equation

$$C_0 + C_1 x + C_2 x^2 + \cdots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real solution in $(0, 1)$.

Solution. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = C_0 x + \frac{C_1 x^2}{2} + \cdots + \frac{C_{n-1} x^n}{n} + \frac{C_n x^{n+1}}{n+1}$$

for $x \in \mathbb{R}$. Then $f(0) = 0$ (this is trivial) and $f(1) = 0$ (this follows from the hypothesis). Since f is differentiable on all of \mathbb{R}, the Mean Value Theorem provides $x \in (0, 1)$ such that $f'(x) = 0$. Since $f'(x) = C_0 + C_1 x + C_2 x^2 + \cdots + C_{n-1} x^{n-1} + C_n x^n$,

this is the desired conclusion. \hfill \Box

Problem 5.5: Let $f : (0, \infty) \to \mathbb{R}$ be differentiable and suppose that $\lim_{x \to \infty} f'(x) = 0$. Prove that $\lim_{x \to \infty} |f(x + 1) - f(x)| = 0$.

Solution. Let $\varepsilon > 0$. Choose $M \in \mathbb{R}$ such that $x > M$ implies $|f'(x)| < \varepsilon$. Let $x > M$. By the Mean Value Theorem, there is $z \in (x, x + 1)$ such that $f(x + 1) - f(x) = f'(z)$. Then $|f(x + 1) - f(x)| = |f'(z)| < \varepsilon$. This shows that $\lim_{x \to \infty} |f(x + 1) - f(x)| = 0$. \hfill \Box

Problem 5.9: Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Assume that $f'(x)$ exists for all $x \neq 0$, and that $\lim_{x \to 0} f'(x) = 3$. Does it follow that $f'(0)$ exists?

Solution. We prove that $f'(0) = 3$. Define $g(x) = x$ for $x \in \mathbb{R}$. Then

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = 3$$

by assumption. Since $f - f(0)$ vanishes at 0 and has derivative f', Theorem 5.13 of Rudin (L’Hospital’s rule) applies to the limit

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{g(x)}$$

Thus

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 3.$$

In particular, $f'(0)$ exists. \hfill \Box
It is mathematically bad practice (although it is, unfortunately, tolerated in freshman calculus courses) to write
\[
\lim_{x \to 0} \frac{f(x) - f(0)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 3
\]
before checking that
\[
\lim_{x \to 0} \frac{f'(x)}{g'(x)}
\]
exists, because the equality
\[
\lim_{x \to 0} \frac{f(x) - f(0)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}
\]
is only known to hold when the second limit exists.

Problem 5.11: Let \(f \) be a real valued function defined on a neighborhood of \(x \in \mathbb{R} \). Suppose that \(f''(x) \) exists. Prove that
\[
\lim_{h \to 0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} = f''(x).
\]
Show by example that the limit might exist even if \(f''(x) \) does not exist.

Solution (sketch). Check using algebra that
\[
\lim_{h \to 0} \frac{f'(x + h) - f'(x - h)}{2h} = f''(x).
\]
Now use Theorem 5.13 of Rudin (L’Hospital’s rule) to show that
\[
\lim_{h \to 0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x + h) - f'(x - h)}{2h} = f''(x).
\]
For the counterexample, take
\[
f(t) = \begin{cases}
1 & t > x \\
0 & t = x \\
-1 & t < x.
\end{cases}
\]
Then
\[
\frac{f(x + h) + f(x - h) - 2f(x)}{h^2} = 0
\]
for all \(h \in \mathbb{R} \setminus \{0\} \). This shows that the limit can exist even if \(f \) isn’t even continuous at \(x \).

Note 1: I gave a counterexample for an arbitrary value of \(x \), but it suffices to give one at a single value of \(x \), such as \(x = 0 \).

Note 2: A legitimate counterexample must be defined at \(x \), since it must satisfy all the hypotheses except for the existence of \(f''(x) \).

Note 3: Another choice for the counterexample is
\[
f(t) = \begin{cases}
(t - x)^2 & t \geq x \\
-(t - x)^2 & t < x.
\end{cases}
\]
This function is continuous at x, and even has a continuous derivative on \mathbb{R}, but $f''(x)$ doesn’t exist. One can also construct examples which are continuous nowhere on \mathbb{R}.

Note 4: It is tempting to use L’Hospital’s rule a second time, to get

$$\lim_{h \to 0} \frac{f(x + h) - f(x - h)}{2h} = \lim_{h \to 0} \frac{f''(x + h) + f''(x - h)}{2}.$$

This reasoning is not valid, since the second limit need not exist. (We do not assume that f'' is continuous.)

Problem 5.13: Let a and c be fixed real numbers, with $c > 0$, and define $f = f_{a,c} : [-1, 1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} |x|^a \sin(|x|^{-c}) & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Prove the following statements. (You may use the standard facts from elementary calculus about the functions $\sin(x)$ and $\cos(x)$.)

1. f is continuous if and only if $a > 0$.
2. $f'(0)$ exists if and only if $a > 1$.
3. f' is bounded if and only if $a \geq 1 + c$.
4. f' is continuous on $[-1, 1]$ if and only if $a > 1 + c$.
5. $f''(0)$ exists if and only if $a > 2 + c$.
6. f'' is bounded if and only if $a \geq 2 + 2c$.
7. f'' is continuous on $[-1, 1]$ if and only if $a > 2 + 2c$.

The book has

$$f(x) = \begin{cases} x^a \sin(|x|^{-c}) & x \neq 0 \\ 0 & x = 0. \end{cases}$$

However, unless a is a rational number with odd denominator, this function will not be defined for $x < 0$.

Solution to (1) (sketch). Since $x \mapsto \sin(x)$ is continuous, we need only consider continuity at 0. If $a > 0$, then $\lim_{x \to 0} f(x) = 0$ since $|f(x)| \leq |x|^a$ and $\lim_{x \to 0} |x|^a = 0$.

Now define sequences $(x_n)_{n \in \mathbb{Z}_{>0}}$ and $(y_n)_{n \in \mathbb{Z}_{>0}}$ by

1. $x_n = \frac{1}{\left((2n + \frac{1}{2}) \pi \right)^{1/c}}$ and $y_n = \frac{1}{\left((2n + \frac{3}{2}) \pi \right)^{1/c}}$

for $n \in \mathbb{Z}_{>0}$. Then

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$$

and

$$\sin(|x_n|^{-c}) = 1 \quad \text{and} \quad \sin(|y_n|^{-c}) = -1$$

for all $n \in \mathbb{Z}_{>0}$. (We will use these sequences in other parts of the problem.)

If now $a = 0$, then, with $(x_n)_{n \in \mathbb{Z}_{>0}}$ and $(y_n)_{n \in \mathbb{Z}_{>0}}$ as in (1),

$$\lim_{n \to \infty} f(x_n) = 1 \quad \text{and} \quad \lim_{n \to \infty} f(y_n) = -1,$$
so \(\lim_{x \to 0} f(x) \) does not exist, and \(f \) is not continuous at 0. If \(a < 0 \), then
\[
\lim_{n \to \infty} f(x_n) = \infty \quad \text{and} \quad \lim_{n \to \infty} f(y_n) = -\infty,
\]
with the same result.

Note: Since \(f(0) \) is defined to be 0, we actually need only consider \(\lim_{n \to \infty} f(x_n) \).
The conclusion \(\lim_{x \to 0} f(x) \) does not exist is stronger, and will be useful later.

Solution to (2) (sketch). We test for existence of
\[
f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} f_{a-1,c}(h),
\]
which we saw in Part (1) exists if and only if \(a - 1 > 0 \). Moreover (for use below), note that if the limit does exist then it is equal to 0.

Solution to (3) (sketch). Boundedness does not depend on \(f'(0) \) (or even on whether \(f'(0) \) exists). So we use the formula
\[
f'(x) = ax^{a-1} \sin (x^{-c}) + cx^{a-c-1} \cos (x^{-c})
\]
for \(x > 0 \), and for \(x < 0 \) we use
\[
f'(x) = -f'(-x) = -f'(|x|) = -a|x|^{a-1} \sin (|x|^{-c}) - c|x|^{a-c-1} \cos (|x|^{-c}).
\]
If \(a - c - 1 \geq 0 \), then also \(a - 1 \geq 0 \) (recall that \(c > 0 \)), and \(f' \) is bounded (by \(c + a \)).

Otherwise, we consider the sequences \((w_n)_{n \in \mathbb{Z}_{>0}}\) and \((z_n)_{n \in \mathbb{Z}_{>0}}\) given by
\[
(2) \quad w_n = \frac{1}{|2n\pi|^{1/c}} \quad \text{and} \quad z_n = \frac{1}{|(2n + 1)\pi|^{1/c}}
\]
for \(n \in \mathbb{Z}_{>0} \). Since
\[
\sin (w_n^{-c}) = \sin (z_n^{-c}) = 0
\]
and
\[
\cos (w_n^{-c}) = 1 \quad \text{and} \quad \cos (z_n^{-c}) = -1,
\]
arguments as in Part (1) show that
\[
\lim_{n \to \infty} f'(w_n) = -\infty \quad \text{and} \quad \lim_{n \to \infty} f'(z_n) = \infty,
\]
so \(f' \) is not bounded.

Solution to (4) (sketch). If \(a < 1 + c \), then \(f' \) is not bounded on \([-1, 1] \setminus \{0\}\) by Part (3). Since \([-1, 1] \) is compact, \(f'|[-1,1] \setminus \{0\} \) therefore can’t be the restriction of a continuous function on \([-1, 1] \). If \(a = 1 + c \), then the sequences \((2)\) satisfy
\[
\lim_{n \to \infty} f'(w_n) = -c \quad \text{and} \quad \lim_{n \to \infty} f'(z_n) = c,
\]
so again \(f' \) can’t be the restriction of a continuous function on \([-1, 1] \). If \(a > 1 + c \), then also \(a > 1 \), and \(\lim_{x \to 0} f'(x) = 0 \) by reasoning similar to that of Part (1). Moreover \(f'(0) = 0 \) by the extra conclusion in the proof of Part (2). So \(f' \) is continuous at 0, hence continuous.

Solution to (5) (sketch). This is reduced to Part (4) in the same way Part (2) was reduced to Part (1). As there, note also that \(f''(0) = 0 \) if it exists.
Solution to (6) (sketch). For $x \neq 0$, we have
\[f''(x) = a(a - 1)|x|^{a-2} \sin \left(|x|^{-c} \right) + (2ac - c^2 - c)x^{a-c-2} \cos \left(|x|^{-c} \right)
- c^2|x|^{a-2c-2} \sin \left(|x|^{-c} \right). \]
(One handles the cases $x > 0$ and $x < 0$ separately, as in Part (3), but this time the resulting formula is the same for both cases.) Since $c > 0$, if $a - 2c - 2 \geq 0$ then also $a > 2 + c$, so f'' is bounded on $[-1, 1]\{0\}$. If $a - 2c - 2 < 0$, then, with $(x_n)_{n \in \mathbb{Z} > 0}$ as in (1), we have
\[f''(x_n) = a(a - 1)x_n^{a-2} - c^2x_n^{a-2c-2} = (a(a - 1)x_n^{a-2} - c^2)x_n^{a-2c-2}. \]
Since $x_n \to 0$, $2c > 0$, and $a - 2c - 2 < 0$, we have
\[\lim_{n \to \infty} [a(a - 1)x_n^{a-2} - c^2] = -c^2 < 0 \quad \text{and} \quad \lim_{n \to \infty} x_n^{a-2c-2} = \infty. \]
Therefore $\lim_{n \to \infty} f''(x_n) = -\infty$. So f'' is not bounded.

Solution to (7) (sketch). Recall from the extra conclusion in Part (5) that $f''(0) = 0$ if it exists. If $a - 2c - 2 > 0$, then also $a - c - 1 > 0$ and $a - 2 > 0$, so $\lim_{x \to 0} f''(x) = 0$ by a more complicated version of the arguments used in Parts (1) and (4). If $a - 2c - 2 < 0$, then f'' isn’t bounded on $[-1, 1]\{0\}$, so f'' can’t be continuous on $[-1, 1]$. If $a - 2c - 2 = 0$, then $a - 2 > 0$. Therefore
\[f''(x_n) = a(a - 1)x_n^{a-2} - c^2x_n^{a-2c-2} = a(a - 1)x_n^{a-2} - c^2 \to c^2 \neq 0 \]
as $n \to \infty$. So f'' is not continuous at 0.