MATH 617 (WINTER 2024, PHILLIPS): HOMEWORK 1

This homework assignment is due Wednesday 17 January 2024.
Problem 1 (Problem A). Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces, let $h: X \rightarrow$ Y be a measurable function (that is, if $F \in \mathcal{N}$ then $h^{-1}(F) \in \mathcal{M}$), and let μ be a measure on (X, \mathcal{M}). Define $\nu: \mathcal{N} \rightarrow[0, \infty]$ by $\nu(F)=\mu\left(h^{-1}(F)\right)$ for $F \in \mathcal{N}$. Prove the following:
(1) ν is a measure on (X, \mathcal{M}).
(2) If $f: Y \rightarrow[0, \infty]$ is measurable, then $f \circ h: X \rightarrow[0, \infty]$ is measurable, and $\int_{X}(f \circ h) d \mu=\int_{Y} f d \nu$.
(3) If $f: Y \rightarrow \mathbb{C}$ is integrable, then $f \circ h: X \rightarrow \mathbb{C}$ is integrable, and $\int_{X}(f \circ$ h) $d \mu=\int_{Y} f d \nu$.

The measure ν is called the push forward of μ under h, and written $h_{*}(\mu)$.
Problem 2 (Problem 13 in Chapter 4 of Rudin). Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a 1-periodic continuous function. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n \alpha)=\int_{0}^{1} f(t) d t
$$

Hint. First consider the case $f(t)=e^{2 \pi i k t}$ for some $k \in \mathbb{Z}$.
Problem 3 (Problem 4 in Chapter 5 of Rudin). Define $M \subset C([0,1])$ by

$$
M=\left\{f \in C([0,1]): \int_{0}^{1 / 2} f(t) d t-\int_{1 / 2}^{1} f(t) d t=1\right\} .
$$

Prove that M is a closed convex set which contains no element of minimal norm.
Why does this not contradict Theorem 4.10 of Rudin's book?
Problem 4 (Problem 5 in Chapter 5 of Rudin). Define $M \subset L^{1}([0,1])$ (using Lebesgue measure) by

$$
M=\left\{\xi \in L^{1}([0,1]): \int_{0}^{1} \xi(t) d t=1\right\}
$$

Prove that M is a closed convex set which contains infinitely many element of minimal norm.

Why does this not contradict Theorem 4.10 of Rudin's book?
Problem 5 (Problem 14 in Chapter 5 of Rudin). For $n \in \mathbb{Z}_{>0}$ define a subset $X_{n} \subset C([0,1])$ by

$$
\begin{aligned}
X_{n}=\{f & \in C([0,1]): \text { there is } t \in[0,1] \text { such } \\
& \quad \text { that }|f(s-t)| \leq n|s-t| \text { for all } s \in[0,1]\} .
\end{aligned}
$$

(1) Let $n \in \mathbb{Z}_{>0}$ and let $U \subset C([0,1])$ be a nonempty open set. Prove that there is a nonempty open set $V \subset U$ such that $V \cap X_{n}=\varnothing$.

[^0](2) Prove that there is a dense G_{δ}-set $G \subset C([0,1])$ such that every function $f \in G$ is nowhere differentiable.
Hint. For (1), every function $f \in C([0,1])$ can be uniformly approximated by a zigzag function g with very large slopes. If these slopes are large enough, and $\|g-h\|_{\infty}$ is small enough, then $h \notin X_{n}$.

[^0]: Date: 8 January 2024.

