MATH 617 (WINTER 2024, PHILLIPS): HOMEWORK 2

This homework assignment is due Wednesday 24 January 2024.
Problem 1 (Problem B; worth two ordinary problems). This is a collection of standard facts about bounded linear operators which are not in Chapter 5 of Rudin, but are in functional analysis books. Please try to do them from scratch, without looking up the proofs in textbooks.

Recall that if E and F are normed vector spaces, then $L(E, F)$ is the set of all bounded (equivalently, continuous) linear maps from E to F. (This space is also often called $B(E, F)$.) Further, recall that if $a \in L(E, F)$, then

$$
\|a\|=\sup (\{\|a \xi\|: \xi \in E \text { and }\|\xi\| \leq 1\}) .
$$

(1) Let E and F be normed vector spaces. Prove that $\|\cdot\|$ is a norm on $L(E, F)$.
(2) Let E be a normed vector space and let F be a Banach space. Prove that $L(E, F)$ is a Banach space.
(3) Let E_{1}, E_{2}, and E_{3} be normed vector spaces. Let $b \in L\left(E_{1}, E_{2}\right)$ and let $a \in L\left(E_{2}, E_{3}\right)$. Prove that $\|a b\| \leq\|a\|\|b\|$.
(4) Let E and F be normed vector spaces, with E finite dimensional. Prove that every linear map $a: E \rightarrow F$ is bounded. (This is not as straightforward as one might initially think.)

Problem 2 (Problem 11 in Chapter 5 of Rudin; worth two ordinary problems). Let $\alpha \in(0,1]$ and let $[a, b] \subset \mathbb{R}$ be a compact interval.

For $f:[a, b] \rightarrow \mathbb{C}$ define

$$
M_{\alpha, f}=\sup _{s \neq t} \frac{|f(s)-f(t)|}{|s-t|^{\alpha}},
$$

and

$$
\|f\|_{\alpha}=|f(a)|+M_{\alpha, f} \quad \text { and } \quad\|f\|_{\alpha}^{\prime}=\|f\|_{\infty}+M_{\alpha, f}
$$

Then define

$$
\operatorname{Lip}^{\alpha}([a, b])=\left\{f:[a, b] \rightarrow \mathbb{C}: M_{\alpha, f}<\infty\right\}
$$

We write Lip ${ }^{\alpha}$ for short when $[a, b]$ is understood.
Prove that $\operatorname{Lip}^{\alpha}$ is vector space, that $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\alpha}^{\prime}$ are norms on $\operatorname{Lip}^{\alpha}$, and that Lip^{α} is a Banach space with respect to each of these norms.

The functions $f \in \operatorname{Lip}^{\alpha}$ are said to satisfy a Lipschitz condition of order α, and when $\alpha=1$ to be Lipschtiz functions. The definition makes sense for any metric space X in place of $[a, b]$, and the function spaces are Banach spaces (with the same proofs) whenever in addition X is compact.

Hint. The proofs for both norms are essentially the same. One can avoid repeating some of the work by showing that there are constants $c_{1}, c_{2}>0$ (depending on a, b, and α) such that for all $f \in \operatorname{Lip}^{\alpha}$ we have $c_{1}\|f\|_{\alpha} \leq\|f\|_{\alpha}^{\prime} \leq c_{2}\|f\|_{\alpha}$.

[^0]Problem 3 (Problem 16 in Chapter 5 of Rudin). Prove the following theorem (the Closed Graph Theorem). Let E and F be Banach spaces, and let $a: E \rightarrow F$ be a linear map. Suppose that whenever $\left(\xi_{n}\right)_{n \in \mathbb{Z}_{>0}}$ is a sequence in $E, \xi \in E, \eta \in F$, and

$$
\lim _{n \rightarrow \infty} \xi_{n}=\xi \quad \text { and } \quad \lim _{n \rightarrow \infty} a \xi_{n}=\eta
$$

then $a \xi=\eta$. Prove that a is continuous.
Moreover, prove that, without the linearity hypothesis, the statement is false, even for $E=F=\mathbb{R}$.

Hint. Make $E \oplus F$ into a Banach space with the standard vector space operations and the norm $\|(\xi, \eta)\|=\|\xi\|+\|\eta\|$ for $\xi \in E$ and $\eta \in F$. (You should check that this formula gives a complete norm on $E \oplus F$, but this is easy.) Define $G \subset E \oplus F$ by

$$
G=\{(\xi, a \xi): \xi \in E\}
$$

Prove that G s a Banach space, and that the restriction to G of the first coordinate projection $E \oplus F \rightarrow E$ is bijective and continuous.
(There are other choices for the norm on $E \oplus F$ which work equally well, such as $\|(\xi, \eta)\|=\max (\|\xi\|,\|\eta\|)$.)

For the last part, define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{-1} & x \neq 0 \\ 0 & x=0\end{cases}
$$

[^0]: Date: 17 January 2024.

