
MATH 617 (WINTER 2024, PHILLIPS): PARTIAL SOLUTIONS

TO HOMEWORK 2

This homework assignment is due Wednesday 24 January 2024.
Solutions have not yet been properly proofread.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.

Problem 1 (Problem B; worth two ordinary problems). This is a collection of
standard facts about bounded linear operators which are not in Chapter 5 of Rudin,
but are in functional analysis books. Please try to do them from scratch, without
looking up the proofs in textbooks.

Recall that if E and F are normed vector spaces, then L(E,F ) is the set of all
bounded (equivalently, continuous) linear maps from E to F . (This space is also
often called B(E,F ).) Further, recall that if a ∈ L(E,F ), then

‖a‖ = sup
({
‖aξ‖ : ξ ∈ E and ‖ξ‖ ≤ 1

})
.

(1) Let E and F be normed vector spaces. Prove that ‖·‖ is a norm on L(E,F ).
(2) Let E be a normed vector space and let F be a Banach space. Prove that

L(E,F ) is a Banach space.
(3) Let E1, E2, and E3 be normed vector spaces. Let a ∈ L(E1, E2) and

let b ∈ L(E2, E3)
::::::::::::
b ∈ L(E1, E2)

::::
and

:::
let

:::::::::::::
a ∈ L(E2, E3). Prove that ‖ab‖ ≤

‖a‖‖b‖.
(4) Let E and F be normed vector spaces, with E finite dimensional. Prove

that every linear map a : E → F is bounded. (This is not as straightforward
as one might initially think.)

Proof of Part (1). No proof has been written yet, but this is just calculations.
:::
We

::::::
mostly

:::
use

::::
the

::::::::::::::
characterization

:::
of

:::
‖a‖

::::::
(done

::
in

::::::
class,

:::
but

::::::
stated

:::::
here

::
in

::::
two

:::::
parts

::
for

:::::::::::
convenience

:::
of

:::::::
writing)

:

(1) ‖a‖ = inf
({
M ∈

::::::::::::::

[0,∞) :
::::::

for all ξ ∈ E we have ‖aξ‖ ≤M‖ξ‖
::::::::::::::::::::::::::::::

})
::

::::
and,

:::
for

:::
all

::::::
ξ ∈ E,

:

(2) ‖aξ‖ ≤ ‖a‖‖ξ‖.
:::::::::::::

::::::::::::
Nonemptiness

:::
of

:::
the

:::
set

:::
in

:::
(1)

::
is
::::

the
:::::::::
definition

::
of

::::::::::::
boundedness

:::
for

::
a
::::::
linear

:::::
map,

:::
and

:::
(2)

:::::
says

:::
this

::::
set

:::::::
contains

:::
its

:::::::::
infimum.

:::
(It

::
is

::::::::
necessary

:::
to

::::::
specify

:::::::
M ≥ 0

::
in

::::
(1),

::::
since

:::::::::
otherwise

::
if

::::::::
E = {0}

::::
and

:::::::::::
a ∈ L(E,F )

::
is

:::
the

:::::
zero

::::::::
operator,

:::::
then

:::::::::::
‖a‖ = −∞.)

::
It

::
is

:::::::
obvious

::::
that

::
if
:::::::::::
a ∈ L(E,F )

:::::
then

::::::::
‖a‖ ≥ 0.

:

::::::::
Suppose

::::::::
‖a‖ = 0.

:::
By

::::
(2),

:::
for

::::
any

:::::
ξ ∈ E

:::
we

:::::
have

::::::::::::::::::
‖aξ‖ ≤ ‖a‖‖ξ‖ = 0,

::
so

:::::::
aξ = 0.

:::::
Since

:::
this

::::::
holds

:::
for

:::
all

::::::
ξ ∈ E,

:::
we

:::
get

::::::
a = 0.

:
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:::
For

:::::::::::::
subadditivity,

:::
let

:::::::::::::
a, b ∈ L(E,F ).

::::
For

:::
all

:::::
ξ ∈ E

:::
we

::::::
have,

:::::
using

::::::::::::
subadditivity

::
of

:::
the

:::::
norm

:::
on

::
F

:::
at

:::
the

:::::::
second

::::
step

::::
and

:::
(2)

::
at

::::
the

:::::
third

:::::
step,

‖(a+ b)ξ‖ = ‖aξ + bξ‖ ≤ ‖aξ‖+ ‖bξ‖ ≤ ‖a‖‖ξ‖+ ‖b‖‖ξ‖ =
(
‖a‖+ ‖b‖

)
‖ξ‖.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
Since

:::
this

::
is
:::::

true
:::
for

:::
all

::::::
ξ ∈ E,

:::
by

:::
(1)

:::
we

:::
get

:::::::::::::::::::
‖a+ b‖ ≤ ‖a‖+ ‖b‖.

:

:::
To

:::::
prove

::::::::::::
homogeneity,

:::
for

::::::
λ ∈ C

::::
and

:::::::::::
a ∈ L(E,F )

:::
we

:::::::::
calculate:

:

‖λa‖ = sup
‖ξ‖≤1‖

‖(λa)ξ‖ = sup
‖ξ‖≤1‖

‖λ · (aξ)‖ = sup
‖ξ‖≤1‖

|λ|‖aξ‖ = |λ| sup
‖ξ‖≤1‖

‖aξ‖ = |λ|‖a‖.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::
This

:::::::::
completes

::::
the

::::::::
solution.

:
�

Alternate proof of homogeneity.
::
For

:::
all

::::::
ξ ∈ E

:::
we

::::::
have,

:::::
using

::::::::::::
homogeneity

::
of

::::
the

:::::
norm

::
on

:::
F

::
at

:::
the

:::::::
second

::::
step

::::
and

:::
(2)

:::
at

:::
the

:::::
third

:::::
step,

:

‖(λa)ξ‖ = ‖λ · (aξ)‖ = |λ|‖aξ‖ ≤ |λ|‖a‖‖ξ‖.
::::::::::::::::::::::::::::::::::::::

:::::::::
Therefore,

:::
by

::::
(1),

(3) ‖λa‖ ≤ |λ|‖a‖.
::::::::::::

:
If
::::::
λ = 0,

:::::::::::::
nonnegativity

::
of

:::
the

:::::
norm

:::
on

:::::::
L(E,F )

:::::
gives

:::::::::::::::::
‖λa‖ = 0 = |λ|‖a‖.

::::::::::
Otherwise,

:::::
apply

:::
(3)

:::::
with

::::
λ−1

:::
in

:::::
place

::
of

::
λ
::::

and
::::
λa

::
in

:::::
place

:::
of

::
a,

:::::::
getting

::::::::::::::::
‖a‖ ≤ |λ|−1‖λa‖.

::::::::::
Combining

:::
this

:::::
with

:::
(3)

:::::
gives

::::::::::::::
‖λa‖ = |λ|‖a‖. �

Proof of (2). Let (an)n∈Z>0
be a Cauchy sequence in L(E,F ). Let ξ ∈ E. For

m,n ∈ Z>0, we have

‖amξ − anξ‖ = ‖(am − an)ξ‖ ≤ ‖ξ‖‖am − an‖,

It is now immediate that (anξ)n∈Z>0 is a Cauchy sequence in F . Since F is complete,
limn→∞ anξ exists. Denote this limit by aξ.

Using continuity of addition and scalar multiplication, and linearity of an for
n ∈ Z>0, one checks immediately that a is linear.

In any normed vector space, we have
∣∣‖ξ‖ − ‖η‖∣∣ ≤ ‖ξ − η‖. Applying this to

L(E,F ), it is immediate that (‖an‖)n∈Z>0 is a Cauchy sequence in R. Therefore
M = supn∈Z>0

‖an‖ is finite. For ξ ∈ E, we have

‖aξ‖ = lim
n→∞

‖anξ‖ ≤ lim sup n→In→∞
::::

‖an‖‖ξ‖ ≤M‖ξ‖.

Thus a is bounded.
It remains to show that limn→∞ ‖an− a‖ = 0. (Without doing this, the proof is

not complete.) So let ε > 0. Choose N ∈ Z>0 such that for all m,n ≥ N we have
‖am − an‖ < ε

2 . Let n ∈ Z>0 satisfy n ≥ N . Then for any ξ ∈ E we have

‖(an − a)ξ‖ = ‖anξ − aξ‖ = lim
m→∞

‖anξ − amξ‖ ≤ lim sup
n→I

‖an − am‖‖ξ‖ ≤
ε

2
‖ξ‖.

This shows that ‖an − a‖ ≤ ε
2 < ε. Thus limn→∞ ‖an − a‖ = 0. �

Proof of (3). No proof has been written yet, but this is just a calculation. �

Proof of (4). Let η1, η2, . . . , ηn form a basis for E.
Define

S =
{

(α1, α2, . . . , αn) ∈ Cn : ‖(α1, α2, . . . , αn)‖2 = 1
}
,
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which is a compact subset of Cn, and define a continuous function f : S → [0,∞)
by

f(α1, α2, . . . , αn) =

∥∥∥∥∥
n∑
j=1

αjηj

∥∥∥∥∥.
Set c = inf

(
{f(α) : α ∈ S

)
::::::::::::::::::::
c = inf

(
{f(α) : α ∈ S

})
. Since η1, η2, . . . , ηn are linearly

independent, 0 6∈ Ran(f), so c > 0. Set

M =
1

c

n∑
j=1

‖aηj‖.

We will show ‖a‖ ≤M .
Let ξ ∈ E satisfy ‖ξ‖ = 1. Then there are β1, β2, . . . , βn ∈ C such that ξ =∑n
j=1 βjηj . Set β = (β1, β2, . . . , βn) and for j = 1, 2, . . . , n set αj = ‖β‖−12 βj .

Then (α1, α2, . . . , αn) ∈ S. Therefore
∥∥‖β‖−12 ξ

∥∥ ≥ c. Since ‖ξ‖ = 1, we get

1

c
≥ ‖β‖2 ≥ max 1leqj≤n1≤j≤n

:::::
|βj |,

whence

‖aξ‖ =

∥∥∥∥∥
n∑
j=1

βjaηj

∥∥∥∥∥ ≤
(

max
1leqj≤n

|βj |
) n∑
j=1

‖ajηj‖ ≤
1

c

n∑
j=1

‖aηj‖ = M.

For general nonzero ξ ∈ E, applying this to ‖ξ‖−1ξ gives ‖aξ‖ ≤M‖ξ‖. This is
also true for ξ = 0. �

Remark 1. It is common to write, “let {η1, η2, . . . , ηn} be a basis for E”, but this
means something different. For example,

{
(1, 0), (1, 0), (0, 1)

}
is a basis for C2,

because {
(1, 0), (1, 0), (0, 1)

}
=
{

(1, 0), (0, 1)
}
.

Problem 2 (Problem 11 in Chapter 5 of Rudin; worth two ordinary problems).
Let 0 < α ≤ 1

::::::::
α ∈ (0, 1] and let [a, b] ⊂ R be a compact interval.

For f : [a, b]→ C define

Mα,f = sup
s6=t

|f(s)− f(t)|
|s− t|α

,

and

‖f‖α = |f(a)|+Mα,f and ‖f‖′α = ‖f‖∞ +Mα,f .

Then define

Lipα([a, b]) =
{
f : [a, b]→ C : Mα,f <∞

}
.

We write Lipα for short when [a, b] is understood.
Prove that Lipα is vector space, that ‖ · ‖α and ‖ · ‖′α are norms on Lipα, and

that Lipα is a Banach space with respect to each of these norms.

The functions f ∈ Lipα are said to satisfy a Lipschitz condition of order α, and
when α = 1 to be Lipschtiz functions. The definition makes sense for any metric
space X in place of [a, b], and the function spaces are Banach spaces (with the same
proofs) whenever in addition X is compact.



4 MATH 617 (WINTER 2024): SOLUTIONS 2

Hint. The proofs for both norms are essentially the same. One can avoid repeating
some of the work by showing that there are constants c1, c2 > 0 (depending on a, b,
and α) such that for all f ∈ Lipα we have c1‖f‖α ≤ ‖f‖′α ≤ c2‖f‖α::::::::::::::::::::::

c1‖f‖α ≤ ‖f‖′α ≤ c2‖f‖α.

The solution is presented as a number of lemmas, organized so as to minimize
the work.

Lemma 2. Let f : [a, b]→ C and suppose that Mα,f <∞. Then f is continuous.

The proof is standard in earlier courses, and is omitted.

Lemma 3. Let f ∈ Lipα. Then ‖f‖α ≤ ‖f‖′α.

Proof. This is immediate. �

Lemma 4.
:::
Let

:::::::::::::::::::::::
c = 1 + max(1, (b− a)α).

:::::
Then

:::::::::::::
‖f‖′α ≤ c‖f‖α:::

for
:::
all

:::::::::
f ∈ Lipα.

:

Proof.
:::
Let

:::::::::
f ∈ Lipα.

::::
For

::::
any

::::::::
t ∈ [a, b],

:::
we

:::::
have

:::::::::::::
|t− a| ≤ b− a,

:::
so

|f(t)| ≤ |f(a)|+ |f(t)− f(a)| ≤ |f(a)|+Mα,f |t− a|α

≤ |f(a)|+Mα,f (b− a)α ≤ max(1, (b− a)α)‖f‖α.
::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
Therefore

::::::::::::::::::::::::::::
‖f‖∞ ≤ max(1, (b− a)α)‖f‖α.

:::
So

:

‖f‖′α = ‖f‖∞ +Mα,f ≤ max(1, (b− a)α)‖f‖α + ‖f‖α = c‖f‖α.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::
This

:::::::::
completes

::::
the

:::::
proof.

:
�

Lemma 5. The set Lipα is a vector space, and ‖ · ‖α and ‖ · ‖′α are norms on Lipα.

Proof. If f ∈ Lipα then Mα,f < ∞ by definition, and
::::
then

::::::
clearly

:
‖f‖∞ < ∞by

Lemma 2, so ‖f‖′α <∞. Therefore ‖f‖α <∞ :
.
:::::::::
Therefore

:::::::::
‖f‖′α <∞:

by Lemma 3
:
4.

A calculation (which we omit) shows that for any functions f, g : [a, b]→ C
:::
We

:::::
claim

::::
that

::
if

:::::::::::::
f, g : [a, b]→ C

:
and λ ∈ Cwe have ,

:::::
then

Mα,f+g ≤Mα,f +Mα,g and Mα,λf = |λ| ·Mα,f .

:::
For

:::
the

:::::
first,

:

Mα,f+g = sup
s6=t

|f(s) + g(s)− f(t)− g(t)|
|s− t|α

≤ sup
s6=t

(
|f(s)− f(t)|
|s− t|α

+
|g(s)− g(t)|
|s− t|α

)
≤ sup

s6=t

|f(s)− f(t)|
|s− t|α

+ sup
s 6=t

|g(s)− g(t)|
|s− t|α

= Mα,f +Mα,g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::
For

:::
the

:::::::
second,

:

Mα,λf = sup
s6=t

|λf(s)− λf(t)|
|s− t|α

= sup
s 6=t
|λ|
(
|f(s)− f(t)|
|s− t|α

)
= |λ| sup

s6=t

(
|f(s)− f(t)|
|s− t|α

)
= |λ| ·Mα,f .

::::::::::::::::::::::::::::::::::::::::::::::::

:::
The

::::::
claim

::
is

:::::::
proved.

:

The known properties of | · | and ‖ · ‖∞ now immediately imply

‖f + g‖α ≤ ‖f‖α + ‖g‖α and ‖λf‖α = |λ| · ‖f‖α,
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and

‖f + g‖′α ≤ ‖f‖′α + ‖g‖′α and ‖λf‖′α = |λ| · ‖f‖′α.
It immediately follows that Lipα is closed under addition and scalar multiplication,
so is a vector space. To show that ‖ · ‖α and ‖ · ‖′α are norms, it only remains to
show that if ‖f‖α = 0 or ‖f‖′α = 0 then f = 0. By Lemma 3 we need only consider
the case ‖f‖α = 0. If ‖f‖α = 0 then clearly Mα,f = 0, from which it follows that
|f(s)− f(t)| = 0 whenever s 6= t. That is, f is constant. But ‖f‖α = 0 also implies
|f(a)| = 0, whence f = 0. �

Lemma 6. The space Lipα is complete in ‖ · ‖′α.

Proof. Let (fn)n∈Z>0
be a Cauchy sequence in Lipα with respect to ‖ · ‖′α. Since

‖f‖∞ ≤ ‖f‖′α for any f , it follows from Lemma 2 that (fn)n∈Z>0
is a Cauchy

sequence in C([a, b]). Therefore there is f ∈ C([a, b]) such that ‖fn − f‖∞ → 0,
that is, (fn)n∈Z>0

converges uniformly to f .
Set M = supn∈Z>0

‖fn‖′α. Since (fn)n∈Z>0 is a Cauchy sequence with respect to
‖ · ‖′α, we get M < ∞. Now let s, t ∈ [a, b] with s 6= t. Since fn(s) → f(s) and
fn(t)→ f(t), we get

|f(s)− f(t)|
|s− t|α

= lim
n→∞

|fn(s)− fn(t)|
|s− t|α

≤M.

Since s and t are arbitrary, we get Mα,f ≤M <∞. Therefore f ∈ Lipα.
We must still show that limn→∞ ‖fn − f‖′α = 0. Let ε > 0. Choose N so large

that whenever m,n ≥ N then ‖fm− fn‖′α < 1
3ε. We are going to show that n ≥ N

implies ‖fn − f‖′α < ε, and the main part is to estimate Mα, fn−f . So let n ≥ N .
Let s, t ∈ [a, b] with s 6= t. Then

|[fn(s)− f(s)]− [fn(t)− f(t)]|
|s− t|α

= lim
m→∞

|[fn(s)− fm(s)]− [fn(t)− fm(t)]|
|s− t|α

≤ sup
m≥N

Mα, fn−fm ≤ 1
3ε.

|[fn(s)− f(s)]− [fn(t)− f(t)]|
|s− t|α

= lim
m→∞

|[fn(s)− fm(s)]− [fn(t)− fm(t)]|
|s− t|α

≤ sup
m≥N

Mα, fn−fm ≤ 1
3ε.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Taking the supremum over all s and t such that s 6= t, we get Mα, fn−f ≤ 1
3ε <

2
3ε.

Therefore

‖fn − f‖′α = ‖fn − f‖∞ +Mα, fn−f <
1
3ε+ 2

3ε = ε.

That is, n ≥ N implies ‖fn − f‖′α < ε. �

Remark 7.
:::::::
Proving

:::::::
Lemma

::
6

:::::::
without

:::::
using

::::::::::::
completeness

::
of

:::::::
C([a, b])

::::::::
requires

::::
only

:::
one

::
or

::::
two

:::::
more

::::::::::
sentences,

:::::
since

:::::::::
continuity

::
of

::::
the

:::::
limit

:::::::
function

::
is
::::

not
:::::
used.

:::::
This

::::::
change

:::::::::
eliminates

::::
the

:::::
need

:::
for

:::::::
Lemma

::
2.

:

Remark 8. It is almost as easy to prove directly that Lipα is complete in ‖ · ‖α.
One extra piece of reasoning is required, which is in any case contained in the proof
of Lemma 4 below.
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Remark 9. In the proof of Lemma 6, it is essential to prove that limn→∞ ‖fn −
f‖′α = 0. Without this, the lemma has not been proved.

Let c = 1 + max(1, (b− a)α). Then ‖f‖′α ≤ c‖f‖α for all f ∈ Lipα.
Let f ∈ Lipα. For any t ∈ [a, b], we have |t− a| ≤ b− a, so

|f(t)|≤ |f(a)|+ |f(t)− f(a)| ≤ |f(a)|+Mα,f |t− a|α

≤ |f(a)|+Mα,f (b− a)α ≤ max(1, (b− a)α)‖f‖α.

Therefore ‖f‖∞ ≤ max(1, (b− a)α)‖f‖α. So

‖f‖′α = ‖f‖∞ +Mα,f ≤ max(1, (b− a)α)‖f‖α + ‖f‖α = c‖f‖α.

This completes the proof.

Proposition 10. The space Lipα is a Banach space in the norm ‖ · ‖α and also in
the norm ‖ · ‖′α.

Proof. For ‖·‖′α, combine Lemma 5 and Lemma 6. For ‖·‖α, according to Lemma 5
we need only verify that Lipα is complete in this norm. So let (fn)n∈Z>0

be a
Cauchy sequence in Lipα with respect to ‖ · ‖α. It follows from Lemma 4 that
(fn)n∈Z>0 is a Cauchy sequence with respect to ‖ · ‖′α. Lemma 6 provides f ∈
Lipα such that limn→∞ ‖f − fn‖′α = 0. It is now immediate from Lemma 3 that
limn→∞ ‖f − fn‖α = 0. �

Remark 11. Let E be a vector space. Two norms ‖ · ‖1 and ‖ · ‖2 on E are called
equivalent if there are c1, c2 > 0 such that c1‖ξ‖1 ≤ ‖ξ‖2 ≤ c2‖ξ‖1 for all ξ ∈ E.
It is easily checked that this relation is an equivalence relation. Also, one checks
easily that ‖ · ‖1 and ‖ · ‖2 are equivalent if and only if both the identity maps

idE : (E, ‖ · ‖1)→ (E, ‖ · ‖2) and idE : (E, ‖ · ‖2)→ (E, ‖ · ‖1)

are continuous.
Lemma 3 and Lemma 4 show that ‖ · ‖α and ‖ · ‖′α are equivalent, and the proof

of Proposition 10 shows that a vector space which is complete in some norm is also
complete in any equivalent norm.

Problem 3 (Problem 16 in Chapter 5 of Rudin). Prove the following theorem (the
Closed Graph Theorem). Let E and F be Banach spaces, and let a : E → F be a
linear map. Suppose that whenever (ξn)n∈Z>0 is a sequence in E, ξ ∈ E, η ∈ F ,
and

lim
n→∞

ξn = ξ and lim
n→∞

aξn = η,

then aξ = η. Prove that a is continuous.
Moreover, prove that

:
,
:
without the linearity hypothesis, the statement is false,

even for X = Y = R
::::::::::
E = F = R.

Hint. Make E ⊕ F into a Banach space with the standard vector space operations
and the norm ‖(ξ, η)‖ = ‖ξ‖ + ‖η‖ for ξ ∈ E and η ∈ F . (You should check that
this formula gives a complete norm on E ⊕ F , but this is easy.) Define G ⊂ E ⊕ F
by

G =
{

(ξ, aξ) : ξ ∈ E
}
.

Prove that G s a Banach space, and that the restriction to G of the first coordinate
projection E ⊕ F → E is bijective and continuous.
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(There are other choices for the norm on E ⊕ F which work equally well, such
as ‖(ξ, η)‖ = max(‖ξ‖, ‖η‖).)

For the last part, define f : R→ R by

f(x) =

{
x−1 x 6= 0

0 x = 0.

Solution to the first part. We use the notation of the hint.
It is well known that E ⊕ F as described is a vector space. It is easy to check

that the formula ‖(ξ, η)‖ = ‖ξ‖ + ‖η‖ does in fact define a norm on E ⊕ F ;
the proof is omitted. Moreover, one easily checks that, using this norm, one has
limn→∞(ξn, ηn) = (ξ, η) if and only if limn→∞ ξn = ξ and limn→∞ ηn = η.

Define p : E ⊕ F → E and q : E ⊕ F → F by p(ξ, η) = ξ and q(ξ, η) = η
for all ξ ∈ E and η ∈ F . These are well known to be linear. Moreover, clearly
‖p(ξ, η)‖ ≤ ‖(ξ, η)‖ and ‖q(ξ, η)‖ ≤ ‖(ξ, η)‖. In particular, p and q are continuous.

We prove that E⊕F is complete. Consider a Cauchy sequence in E⊕F . It has
the form ((ξn, ηn))n∈Z>0 with ξn ∈ ∅

::::::
ξn ∈ E :

and ηn ∈ F for all n ∈ Z>0. Since
p and q reduce norms, it is immediate that (ξn)n∈Z>0 and (ηn)n∈Z>0 are Cauchy
sequences. Therefore ξ = limn→∞ ξn and η = limn→∞ ηn exist. To complete the
proof of completeness, we show that limn→∞(ξn, ηn) = (ξ, η). But this is immediate
from the observation at the end of the second paragraph.

Let G be as in the hint. We are assuming that for every sequence (ξn)n∈Z>0
in

E such that both ξ = limn→∞ ξn and η = limn→∞ aξn exist, one has aξ = η. By
the observation at the end of the second paragraph, this says that if (γn)n∈Z>0 is a
sequence in G such that limn→∞ γn exists, then limn→∞ γn ∈ G. Thus G is closed.
It is immediate from the linearity of a that G is a vector subspace of E ⊕ F . Thus
G is a Banach space.

The map p|G : G → E is clearly bijective. Since it is continuous and linear,
the Open Mapping Theorem implies that (p|G)−1 is continuous. Therefore a =
(q|G) ◦ (p|G)−1 is continuous. �

It is a standard fact, which you need not reprove in the future, that E ⊕ F as
defined here is a Banach space and that the projections p and q are linear and norm
reducing.

Proof for the nonlinear example. It is obvious that f is not continuous at 0. To
see that the graph G ⊂ R2 of f is closed, define F : R2 → R by f(x, y) = xy, and
write G = {(0, 0)} ∪ F−1({1}). This is a union of two closed sets because F is
continuous. �

Since many people have used sequences in the past, here is a proof in terms of
sequences.

Second proof of the nonlinear example. It is obvious that f is not continuous at 0.
To see that the graph G ⊂ R2 of f is closed, let ((xn, yn))n∈Z>0 be a sequence in G,
and suppose that limn→∞(xn, yn) = (x, y). We need to prove that (x, y) ∈ G.

We have, in particular, limn→∞ xn = x. First suppose that x 6= 0. Then there
is N ∈ Z>0 such that for all n ≥ N we have xn 6= 0. For such values of n, we have
yn = 1

xn
. Since the function h(x) = 1

x ::::::::
h(t) = 1

t is continuous at x0 :
x, it follows that

limn→∞
1
xn

= 1
x . Therefore y = 1

x , whence (x, y) ∈ G.



8 MATH 617 (WINTER 2024): SOLUTIONS 2

Now suppose that x = 0. If xn = 0 for all but finitely many n, then yn = 0 for
all but finitely many n, so limn→∞(xn, yn) = (0, 0), which is in G. Otherwise, we
show that limn→∞ yn does not exist, which is a contradiction. Let M ∈ (0,∞); we
show that for all N ∈ Z>0 there is n ∈ Z>0 with n ≥ N and such that |yn| > M .
Apply the definition of limn→∞ xn = 0 with 1

M in place ε, getting N0 ∈ Z>0. Since
there are infinitely many n ∈ Z>0 such that xn 6= 0, we can find n ∈ Z>0 such that
xn 6= 0 and n > max(N,N0). Then n ≥ N and |yn| > 1

ε = M , as desired. This
shows that limn→∞ yn does not exist. �

Remark 12. The following claim has been made in the past: If (x, y) ∈ R2 \ G
and

δ = min(‖(x, y)‖, ‖(x, y)− (x, 1/x)‖, ‖(x, y)− (1/y, y)‖)
(the minimum of the distances from (x, y) to the three points (0, 0), (x, 1/x), and
(1/y, y)), then the open ball Bδ(x, y) does not intersect G. This is not true. Take
x = y = 5

8 . Then (1, 1) ∈ G and

δ = min

(
5
√

2

8
,

39

40

)
>

3
√

2

8
= ‖(x, y)− (1, 1)‖,

so (1, 1) ∈ Bδ(x, y) ∩G.


