221c221 < Let $a \in L (E_1, E_2)$ and let $b \in L (E_2, E_3)$. --- > Let $b \in L (E_1, E_2)$ and let $a \in L (E_2, E_3)$. 239c239,291 < No proof has been written yet, but this is just calculations. --- > % No proof has been written yet, but this is just calculations. > We mostly use the characterization of $\| a \|$ > (done in class, but stated here in two parts for convenience of writing) > % > \begin{equation}\label{Eq_24208_Inf} > \| a \| = \inf \bigl( \bigl\{ M \in [0, \I) > \colon {\mbox{for all $\xi \in E$ we > have $\| a \xi \| \leq M \| \xi \|$}} \bigr\} \bigr) > \end{equation} > % > and, for all $\xi \in E$, > % > \begin{equation}\label{Eq_24208_Bound} > \| a \xi \| \leq \| a \| \| \xi \|. > \end{equation} > % > Nonemptiness of the set in~(\ref{Eq_24208_Inf}) is the definition > of boundedness for a linear map, > and~(\ref{Eq_24208_Bound}) says this set contains its infimum. > (It is necessary to specify $M \geq 0$ in~(\ref{Eq_24208_Inf}), > since otherwise if $E = \{ 0 \}$ and $a \in L (E, F)$ is the > zero operator, then $\| a \| = - \I$.) > > It is obvious that if $a \in L (E, F)$ then $\| a \| \geq 0$. > > Suppose $\| a \| = 0$. > By~(\ref{Eq_24208_Bound}), for any $\xi \in E$ we have > $\| a \xi \| \leq \| a \| \| \xi \| = 0$, so $a \xi = 0$. > Since this holds for all $\xi \in E$, we get $a = 0$. > > For subadditivity, let $a, b \in L (E, F)$. > For all $\xi \in E$ we have, using subadditivity of the norm on~$F$ > at the second step and~(\ref{Eq_24208_Bound}) at the third step, > \[ > \| (a + b) \xi \| > = \| a \xi + b \xi \| > \leq \| a \xi \| + \| b \xi \| > \leq \| a \| \| \xi \| + \| b \| \| \xi \| > = \bigl( \| a \| + \| b \| \bigr) \| \xi \|. > \] > Since this is true for all $\xi \in E$, by~(\ref{Eq_24208_Inf}) > we get $\| a + b \| \leq \| a \| + \| b \|$. > > To prove homogeneity, for $\ld \in \C$ and $a \in L (E, F)$ we calculate: > \[ > \| \ld a \| > = \sup_{\| \xi \| \leq 1 \|} \| (\ld a) \xi \| > = \sup_{\| \xi \| \leq 1 \|} \| \ld \cdot (a \xi) \| > = \sup_{\| \xi \| \leq 1 \|} | \ld | \| a \xi \| > = | \ld | \sup_{\| \xi \| \leq 1 \|} \| a \xi \| > = | \ld | \| a \|. > \] > This completes the solution. 241a294,316 > \begin{proof}[Alternate proof of homogeneity] > For all $\xi \in E$ we have, using homogeneity of the norm on~$F$ > at the second step and~(\ref{Eq_24208_Bound}) at the third step, > \[ > \| (\ld a) \xi \| > = \| \ld \cdot (a \xi) \| > = | \ld | \| a \xi \| > \leq | \ld | \| a \| \| \xi \|. > \] > Therefore, by~(\ref{Eq_24208_Inf}), > % > \begin{equation}\label{Eq_24208_ScInq} > \| \ld a \| \leq | \ld | \| a \|. > \end{equation} > % > If $\ld = 0$, nonnegativity of the norm on $L (E, F)$ gives > $\| \ld a \| = 0 = | \ld | \| a \|$. > Otherwise, apply (\ref{Eq_24208_ScInq}) with $\ld^{-1}$ in place of $\ld$ > and $\ld a$ in place of~$a$, getting > $\| a \| \leq | \ld |^{- 1} \| \ld a \|$. > Combining this with~(\ref{Eq_24208_ScInq}) > gives $\| \ld a \| = | \ld | \| a \|$. > \end{proof} 271c346 < \leq \limsup_{n \to I} \| a_n \| \| \xi \| --- > \leq \limsup_{n \to \I} \| a_n \| \| \xi \| 314c389 < Set $c = \inf \bigl( \{ f (\af) \colon \af \in S \bigr)$. --- > Set $c = \inf \bigl( \{ f (\af) \colon \af \in S \bigr\} \bigr)$. 332c407 < \frac{1}{c} \geq \| \bt \|_2 \geq \max_{1 leq j \leq n} | \bt_j |, --- > \frac{1}{c} \geq \| \bt \|_2 \geq \max_{1 \leq j \leq n} | \bt_j |, 369c444 < Let $0 < \af \leq 1$ and let $[a, b] \S \R$ be a compact interval. --- > Let $\af \in (0, 1]$ and let $[a, b] \S \R$ be a compact interval. 410c485 < we have $c_1 \| f \|_{\af} \leq\| f \|'_{\af} \leq c_2 \| f \|_{\af}$. --- > we have $c_1 \| f \|_{\af} \leq \| f \|'_{\af} \leq c_2 \| f \|_{\af}$. 433a509,536 > \begin{lem}\label{L_6Z02_Lip_7} > Let $c = 1 + \max (1, \, (b - a)^{\af} )$. > Then $\| f \|'_{\af} \leq c \| f \|_{\af}$ for all > $f \in {\mathrm{Lip}}^{\af}$. > \end{lem} > > \begin{proof} > Let $f \in {\mathrm{Lip}}^{\af}$. > For any $t \in [a, b]$, we have $| t - a | \leq b - a$, so > \[ > \begin{split} > | f (t) | > & \leq | f (a) | + | f (t) - f (a) | > \leq | f (a) | + M_{\af, f} | t - a |^{\af} \\ > & \leq | f (a) | + M_{\af, f} (b - a )^{\af} > \leq \max (1, \, (b - a)^{\af} ) \| f \|_{\af}. > \end{split} > \] > Therefore $\| f \|_{\I} \leq \max (1, \, (b - a)^{\af} ) \| f \|_{\af}$. > So > \[ > \| f \|'_{\af} = \| f \|_{\I} + M_{\af, f} > \leq \max (1, \, (b - a)^{\af} ) \| f \|_{\af} + \| f \|_{\af} > = c \| f \|_{\af}. > \] > This completes the proof. > \end{proof} > 441,444c544,546 < If $f \in {\mathrm{Lip}}^{\af}$ then $M_{\af, f} < \I$ < by definition, and $\| f \|_{\I} < \I$ by Lemma~\ref{L_6Z02_Lip_1}, < so $\| f \|'_{\af} < \I$. < Therefore $\| f \|_{\af} < \I$ by Lemma~\ref{L_6Z02_Lip_2}. --- > If $f \in {\mathrm{Lip}}^{\af}$ then $M_{\af, f} < \I$ by definition, > and then clearly $\| f \|_{\I} < \I$. > Therefore $\| f \|_{\af}' < \I$ by Lemma~\ref{L_6Z02_Lip_7}. 446,447c548 < A calculation (which we omit) shows that for any functions < $f, \, g \colon [a, b] \to \C$ and $\ld \in \C$ we have --- > We claim that if $f, g \colon [a, b] \to \C$ and $\ld \in \C$, then 451a553,582 > For the first, > \[ > \begin{split} > M_{\af, f + g} > & = \sup_{s \neq t} > \frac{ | f (s) + g (s) - f (t) - g (t) |}{| s - t |^{\af} } > \leq \sup_{s \neq t} \left( > \frac{ | f (s) - f (t) |}{| s - t |^{\af} } > + \frac{ | g (s) - g (t) |}{| s - t |^{\af} } \right) > \\ > & \leq \sup_{s \neq t} \frac{ | f (s) - f (t) |}{| s - t |^{\af} } > + \sup_{s \neq t} \frac{ | g (s) - g (t) |}{| s - t |^{\af} } > = M_{\af, f} + M_{\af, g}. > \end{split} > \] > For the second, > \[ > \begin{split} > M_{\af, \ld f} > & = \sup_{s \neq t} \frac{ | \ld f (s) - \ld f (t) |}{| s - t |^{\af} } > = \sup_{s \neq t} | \ld | > \left( \frac{ | f (s) - f (t) |}{| s - t |^{\af} } \right) > \\ > & = | \ld | \sup_{s \neq t} > \left( \frac{ | f (s) - f (t) |}{| s - t |^{\af} } \right) > = | \ld | \cdot M_{\af, f}. > \end{split} > \] > The claim is proved. > 514c645,646 < \begin{align*} --- > \[ > \begin{split} 521c653,654 < \end{align*} --- > \end{split} > \] 534a668,675 > \begin{rmk}\label{R_24208_No_CX_cpt} > Proving Lemma~\ref{L_6Z02_Lip_4} > without using completeness of $C ([a, b])$ > requires only one or two more sentences, > since continuity of the limit function is not used. > This change eliminates the need for Lemma~\ref{L_6Z02_Lip_1}. > \end{rmk} > 547,572d687 < < \begin{lem}\label{L_6Z02_Lip_7} < Let $c = 1 + \max (1, \, (b - a)^{\af} )$. < Then $\| f \|'_{\af} \leq c \| f \|_{\af}$ for all < $f \in {\mathrm{Lip}}^{\af}$. < \end{lem} < < \begin{proof} < Let $f \in {\mathrm{Lip}}^{\af}$. < For any $t \in [a, b]$, we have $| t - a | \leq b - a$, so < \begin{align*} < | f (t) | < & \leq | f (a) | + | f (t) - f (a) | < \leq | f (a) | + M_{\af, f} | t - a |^{\af} \\ < & \leq | f (a) | + M_{\af, f} (b - a )^{\af} < \leq \max (1, \, (b - a)^{\af} ) \| f \|_{\af}. < \end{align*} < Therefore $\| f \|_{\I} \leq \max (1, \, (b - a)^{\af} ) \| f \|_{\af}$. < So < \[ < \| f \|'_{\af} = \| f \|_{\I} + M_{\af, f} < \leq \max (1, \, (b - a)^{\af} ) \| f \|_{\af} + \| f \|_{\af} < = c \| f \|_{\af}. < \] < This completes the proof. < \end{proof} 635,638c750,751 < Moreover, < prove that without the linearity hypothesis, < the statement is false, < even for $X = Y = \R$. --- > Moreover, prove that, without the linearity hypothesis, > the statement is false, even for $E = F = \R$. 655,656c768 < projection $E \oplus F \to E$ < is bijective and \ct. --- > projection $E \oplus F \to E$ is bijective and \ct. 678,679c790 < It is well known that $E \oplus F$ as described is a vector < space. --- > It is well known that $E \oplus F$ as described is a vector space. 682,683c793 < does in fact define a norm on $E \oplus F$; < the proof is omitted. --- > does in fact define a norm on $E \oplus F$; the proof is omitted. 700c810 < with $\xi_n \in \E$ and $\et_n \in F$ for all $n \in \N$. --- > with $\xi_n \in E$ and $\et_n \in F$ for all $n \in \N$. 704,705c814 < Therefore $\xi = \limi{n} \xi_n$ and $\et = \limi{n} \et_n$ < exist. --- > Therefore $\xi = \limi{n} \xi_n$ and $\et = \limi{n} \et_n$ exist. 758,761c867,868 < For such values of~$n$, < we have $y_n = \frac{1}{x_n}$. < Since the function $h (x) = \frac{1}{x}$ < is \ct{} at~$x_0$, --- > For such values of~$n$, we have $y_n = \frac{1}{x_n}$. > Since the function $h (t) = \frac{1}{t}$ is \ct{} at~$x$, 763,764c870 < Therefore $y = \frac{1}{x}$, < whence $(x, y) \in G$. --- > Therefore $y = \frac{1}{x}$, whence $(x, y) \in G$. 769,772c875,876 < so $\limi{n} (x_n, y_n) = (0, 0)$, < which is in~$G$. < Otherwise, < we show that $\limi{n} y_n$ does not exist, --- > so $\limi{n} (x_n, y_n) = (0, 0)$, which is in~$G$. > Otherwise, we show that $\limi{n} y_n$ does not exist, 780,787c884,886 < Since there are infinitely many $n \in \N$ < such that $x_n \neq 0$, < we can find $n \in \N$ < such that $x_n \neq 0$ and $n > \max (N, N_0)$. < Then $n \geq N$ < and < $| y_n | > \frac{1}{\ep} = M$, < as desired. --- > Since there are infinitely many $n \in \N$ such that $x_n \neq 0$, > we can find $n \in \N$ such that $x_n \neq 0$ and $n > \max (N, N_0)$. > Then $n \geq N$ and $| y_n | > \frac{1}{\ep} = M$, as desired.