
MATH 617 (WINTER 2024, PHILLIPS): SOLUTIONS TO

HOMEWORK 3

This homework assignment is due Wednesday 31 January 2024.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.

Problem 1 (Problem 6 in Chapter 5 of Rudin). Let H be a Hilbert space, let
M ⊂ H be a closed subspace, and let ω0 ∈ M∗. Prove that there is a unique
ω ∈ H∗ such that ω|M = ω0 and ‖ω‖ = ‖ω0‖. Moreover, prove that ω vanishes
on M⊥.

Solution. Since M is a Hilbert space, there is η0 ∈ M such that for all ξ ∈ M we
have ω0(ξ) = 〈ξ, η0〉. Moreover, ‖η0‖ = ‖ω0‖. Define ω ∈ H∗ by ω(ξ) = 〈ξ, η0〉 for
ξ ∈ H. Obviously ω|M = ω0. We have ‖ω‖ = ‖η0‖ = ‖ω0‖. Also, if ξ ∈M⊥, then,
since η0 ∈M , we have ω(ξ) = 〈ξ, η0〉 = 0.

It remains to prove that if ρ ∈ H∗ satisfies ρ|M = ω0 and ‖ρ‖ = ‖ω0‖, then
ρ = ω. Given ρ, there is η ∈ H such that for all ξ ∈M we have ρ(ξ) = 〈ξ, η〉. Since
ρ|M = ω0, for all ξ ∈M we have

0 = ρ(ξ)− ω(ξ) = 〈ξ, η〉 − 〈ξ, η0〉 = 〈ξ, η − η0〉.
In particular, 〈η0, η − η0〉 = 0. Therefore

‖η0‖2 + ‖η − η0‖2 = ‖η‖2 = ‖ρ‖2 = ‖ω0‖2 = ‖η0‖2.
Thus ‖η − η0‖ = 0, whence η = η0, so ρ = ω. �

Problem 2 (Problem 18 in Chapter 5 of Rudin). Let E be a normed vector space,
let F be a Banach space, and let (an)n∈Z>0 be a bounded sequence in L(E,F ).
Suppose that there is a dense set S ⊂ E such that limn→∞ anξ exists for all ξ ∈ S.
Prove that limn→∞ anξ exists for all ξ ∈ E.

Solution. For ξ ∈ E set g(ξ) = limn→∞ anξ. Also set M = 1 + supn∈Z>0
‖an‖.

We claim that for ξ ∈ E, the sequence (anξ)n∈Z>0
is Cauchy. Since E is complete,

the result will follow.
To prove the claim, let ξ ∈ E and let ε > 0. Choose η ∈ S such that ‖ξ − η‖ <

ε/(4M). Choose N ∈ Z>0 such that for all n ≥ N we have ‖anη − g(η)‖ < ε
4 . Let

m,n ≥ N . Then

‖amξ − anξ‖ ≤ ‖am‖‖ξ − η‖+ ‖amη − g(η)‖+ ‖g(η)− anη‖+ ‖an‖‖ξ − η‖

< M
( ε

4M

)
+
ε

4
+
ε

4
+M

( ε

4M

)
= ε.

The claim is proved, and therefore the solution is complete. �

We took M = 1 + supn∈Z>0
‖an‖ rather than M = supn∈Z>0

‖an‖ to avoid the
possibility of dividing by zero.

The following example shows that completeness of F is necessary, even if E is
assumed complete. (It was not asked for in the problem.)

Date: 31 January 2024.
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Example 1. Let E = l1(Z>0) with its usual norm. Let F be the set of sequences
in l1(Z>0) with finite support, with the l1 norm. For n ∈ Z>0 define an ∈ L(E,F )
by, for ξ = (ξ1, ξ2, . . .) ∈ L1(Z>0),

aξ =
(
ξ1, ξ2, . . . , ξn, 0, 0, . . .

)
.

Then ‖an‖ ≤ 1. Set S = F . Then for all ξ ∈ S we have limn→∞ anξ = ξ. However,
if ξ ∈ E \ S, for example if ξ = (n−2)n∈Z>0 , then limn→∞ anξ does not exist in F .

Problem 3 (An expansion of Problem 17 in Chapter 5 of Rudin). (This problem is
worth two ordinary problems.) Let µ be a n onzero positive measure on a measur-
able space X. Let p ∈ [1,∞). For f ∈ L∞(X,µ), let m(f) : Lp(X,µ) → Lp(X,µ)
be defined by m(f)(ξ)(x) = f(x)ξ(x), that is, m(f) is the multiplication operator
by f .

(1) Prove that ‖m(f)‖ ≤ ‖f‖∞ for all f ∈ L∞(X,µ).
(2) Prove that ‖m(f)‖ = ‖f‖∞ for all f ∈ L∞(X,µ) if and only if µ is semifi-

nite.
(3) Assume that µ is semifinite. Give, with proof, a characterization in terms

of f of those f ∈ L∞(X,µ) for which the operator m(f) is surjective.
(4) Assume that µ is semifinite. Let f ∈ L∞(X,µ), and suppose that m(f) is

surjective. Prove that m(f) is injective.
(5) Give

:
,
::::
with

::::::
proof, an example of a finite measure µ on a measurable space X

and f ∈ L∞(X,µ) such that that m(f) is injective . but not surjective.

Recall that a measure µ on X is called semifinite if for every measurable set
E ⊂ X with µ(E) > 0, there is a measurable set F ⊂ E with 0 < µ(F ) <∞.

Example 2. Here are some examples of measures which are semifinite and some
which are not. (This isn’t an exercise.)

(1) Every σ-finite measure is semifinite.
(2) Counting measure on R is semifinite but not σ-finite.
(3) On any set X take the measurable sets to be ∅ and X, and take µ(∅) = 0

and µ(X) =∞. Then µ is not semifinite.
(4) On R take the measurable sets to be the countable sets and their comple-

ments. Take µ(E) = 0 if E is countable and µ(E) =∞ if R\E is countable.
Then µ is not semifinite.

I know of no real use for measures which are not semifinite.

We break the solution into several propositions.

Proposition 3. For every positive measure µ and every f ∈ L∞(µ), we have
m(f) ∈ L(Lp(µ)) and ‖m(f)‖ ≤ ‖f‖∞.

Proof. We estimate ‖m(f)ξ‖ for ξ ∈ Lp(µ). We have

‖m(f)ξ‖p =

∫
X

|f(x)ξ(x)|p dµ(x) ≤
∫
X

‖f‖p∞‖ξ(x)|p dµ(x) = ‖f‖p∞‖ξ‖p.

It is clear that m(f) is linear, so we conclude that m(f) is a bounded linear map
with ‖m(f)‖ ≤ ‖f‖∞. �

Proposition 4. For every semifinite positive measure µ and every f ∈ L∞(µ), we
have ‖m(f)‖ = ‖f‖∞.
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Proof. We need only show ‖m(f)‖ ≥ ‖f‖∞. Let c < ‖f‖∞; we show ‖m(f)‖ ≥ c.
Set E = {x ∈ X : |f(x)| ≥ c}. Then µ(E) > 0 by the definition of the essential
supremum. By semifiniteness, there is a measurable set F ⊂ E with 0 < µ(F ) <∞.
Define ξ = (µ(F ))−1/pχF . Then ξ ∈ Lp(µ) and ‖ξ‖p = 1. We have

‖m(f)ξ‖p =

∫
F

[(µ(F ))−1/2|f(x)|]p dµ(x) ≥
(

1

µ(F )

)
· cp · µ(F ) = cp.

So ‖m(f)ξ‖ ≥ c. Thus ‖m(f)‖ ≥ c. �

Proposition 5. For every positive measure µ which is not semifinite, there exists
f ∈ L∞(µ) such that ‖f‖∞ = 1 and m(f) = 0.

Proof. By definition, there is a measurable set E ⊂ X such that µ(E) > 0, and with
the property that for every measurable F ⊂ E we have µ(F ) = 0 or µ(F ) =∞.

We first claim that every ξ ∈ Lp(µ) must vanish almost everywhere on E. The
set
{
x ∈ E : |ξ(x)| ≥ 1

n

}
is a measurable subset of E with finite measure, hence has

measure zero. Therefore

µ({x ∈ E : ξ(x) 6= 0}) ≤
∞∑

n=1

sup
n∈Z>0
::::

µ
({
x ∈ E : |ξ(x)| ≥ 1

n

})
= 0.

This proves the claim.
Now set f = χE . Since µ(E) 6= 0, we have ‖f‖∞ = 1. However, for any

ξ ∈ Lp(µ), the function fξ vanishes almost everywhere on E (because ξ does), and
vanishes everywhere on X \E (because χE does). Thus m(f)ξ = 0. So m(f) is the
zero operator. �

We now consider when m(f) is surjective.

Lemma 6. Let µ be a positive measure, and let f ∈ L∞(µ). Suppose µ({x ∈
X : f(x) = 0}) = 0. Then m(f) is injective.

Proof. Set E = {x ∈ X : f(x) = 0}. Let ξ ∈ Lp(µ) with m(f)ξ = 0. Then ξ = 0
almost everywhere on X \ E. Since µ(E) = 0, we get ξ = 0 almost everywhere on
X, so ξ is the zero element of Lp(µ). �

Proposition 7. Let µ be a semifinite positive measure, and let f ∈ L∞(µ). The
following are equivalent:

(1) m(f) is surjective.
(2) m(f) is bijective.
(3) 1/f ∈ L∞(µ).
(4) There exists α > 0 such that µ({x ∈ X : |f(x)| < α}) = 0.

Proof. The equivalence of (3) and (4) is easy and is omitted. That (3) implies (2)
is clear, since m(f) has the inverse operator m(1/f). That (2) implies (1) is trivial.
We complete the proof by showing that (1) implies (2) and that (2) implies (4).

Assume (1). Set

E = {x ∈ X : f(x) = 0}.
We claim that µ(E) = 0. Suppose not. By semifiniteness, there is F ⊂ E with
0 < µ(F ) < ∞. Then χF ∈ Lp(µ), but χF is not in the range of m(f) because
fξ vanishes on F for every ξ ∈ Lp(µ). This proves the claim. It now follows from
Lemma 6 that m(f) is bijective, which is (2).
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Now assume (2). The Open Mapping Theorem provides c > 0 such that ‖m(f)ξ‖ ≥
c‖ξ‖ for all ξ ∈ Lp(µ). Set

F =
{
x ∈ X : |f(x)| ≤ 1

2c
}
.

We claim µ(F ) = 0, which will prove (4). If not, by semifiniteness, there is G ⊂ F
with 0 < µ(G) <∞. Then χG ∈ Lp(µ) and satisfies ‖χG‖ = [µ(g)]1/2 and

‖m(f)χG‖p =

∫
G

|f |p dµ ≤
(
1
2c
)p
µ(G),

so that ‖m(f)χG‖ ≤ 1
2c[µ(g)]1/2. Since µ(G) 6= 0, this contradicts the choice of c

above. �

Remark 8. It is not really necessary to use the Open Mapping Theorem in the
proof of Proposition 7, but it

:::::::::::
significantly

:
simplifies the proof.

::
We

::::::::::::
demonstrate

::::
with

::
a

:::::
direct

:::::
proof

:::
of

:::
the

:::::::::::
implication

::::
from

::::
(1)

::
to

::::
(4).

:

Alternate proof of (1) imples (4) in Proposition 7.
:::::::
Assume

::::
that

:::
(4)

::::
fails.

::::
Set

::::::::::::::::::::::
E =

{
x ∈ X : f(x) = 0

}
.

:::::
There

:::
are

::::
two

::::::
cases.

:

:::::
First

:::::::
suppose

::::
that

:::::::::
µ(E) > 0.

:::
By

:::::::::::::
semifiniteness,

:::::
there

::
is

::::::
F ⊂ E

:::::
with

:::::::::::::
0 < µ(F ) <∞.

:::::
Then

::::::::::::::
χF ∈ Lp(X,µ).

:::::::::
However,

::::::::::::::::
χF 6∈ Ran(m(f)),

:::::::
because

:::
for

:::
all

::::::::::::
ξ ∈ Lp(X,µ)

:::
we

::::
have

::::::::::::
m(f)ξ|F = 0

::::::
almost

:::::::::::
everywhere.

:

:::
So

:::::::
suppose

::::
that

::::::::::
µ(E) = 0.

:::
For

::::::::
n ∈ Z>0:::

set
:

Sn =

{
x ∈ X :

1

n+ 1
≤ |f(x)| < 1

n

}
.

::::::::::::::::::::::::::::::::

:
If
:::::
there

::::
are

::::
only

:::::::
finitely

:::::
many

::::::::
n ∈ Z>0 ::::

such
::::
that

::::::::::
µ(Sn) > 0,

:::::
then

:::::
there

::
is

::::::::
N ∈ Z>0

::::
such

::::
that

::::::::::
µ(Sn) = 0

:::
for

::
all

:::::::
n ≥ N .

::::::::::
Therefore

µ

({
x ∈ X : |f(x)| < 1

N

})
= µ

( ∞∐
n=N

Sn

)
=

∞∑
n=N

µ(Sn) = 0,

:::::::::::::::::::::::::::::::::::::::::::::::::::::

::::::::::::
contradicting

:::
the

::::::
failure

::
of

:::
(4).

:::
So

:::::
there

::
is

::
a

::::::::
sequence

::::::::::::::::
n(1) < n(2) < · · ·

::
in

::::
Z>0 ::::

such

::::
that

:::
for

:::
all

::::::::
k ∈ Z>0 :::

we
::::
have

:::::::::::::
µ(Sn(k)) > 0.

:::
By

::::::::::::::
semifiniteness,

:::::
there

::
is

::::::::::
Tk ⊂ Sn(k)

::::
such

::::
that

:::::::::::::::
0 < µ(Tk) <∞.

:

:::
For

::::::::
k ∈ Z>0:::

set
:

rk =
1

k1/(2p)n(k)µ(Tk)1/p
.

::::::::::::::::::::::

:::
The

::::
sets

:::::::::
T1, T2, . . .:::

are
:::::::
disjoint.

::::
Set

::::::::::::
T =

⋃∞
k=1 Tk.

::::::
Then

::
we

::::
can

:::::
define

:::::::::::::
η : X → [0,∞)

::
by

:

η(x) =

{
rk k ∈ Z>0 and x ∈ Tk
0 x ∈ X \ T.

:::::::::::::::::::::::::::::::

:::
We

::::
have

:∫
X

|η|p dµ =

∞∑
k=1

rpkµ(Tk) =

∞∑
k=1

1

k1/2n(k)p
≤
∞∑
k=1

1

k1/2 · kp
≤
∞∑
k=1

1

k1/2 · k
<∞.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
so

::::::::::::
η ∈ Lp(X,µ).

:
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::::::::
Suppose

:::::::::::
ξ ∈ Lp(X,µ)

::::
and

::::::::::
m(f)ξ = η.

::::
For

::::::::
k ∈ Z>0::::

and
::::::
almost

:::::
every

:::::::
x ∈ Tk,

:::
we

::::
then

:::::
have

|ξ(x)| =
∣∣∣∣ η(x)

f(x)

∣∣∣∣ =

∣∣∣∣ rkf(x)

∣∣∣∣ ≥ rkn(k).

::::::::::::::::::::::::::::::

:::::::::
Therefore,

:::::
using

::::
the

:::::::::
Monotone

::::::::::::
Convergence

:::::::::
Theorem,∫

X

|ξ|p dµ ≥
∞∑
k=1

∫
Tk

|ξ|p dµ ≥
∞∑
k=1

rpkn(k)pµ(Tk) =

∞∑
k=1

1

k1/2
=∞.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::
This

::::::::::
contradicts

::::::::::::
ξ ∈ Lp(X,µ).

:::
So

::::::
m(f)

::
is

:::
not

::::::::::
surjective.

:
�

Example 9. Proposition 7 fails whenever µ is not semifinite. With f as in the
proof of Proposition 5, the function 1− f satisfies (1) and (2) but not (3) or (4).

Remark 10. The conditions in Proposition 7 are not equivalent to injectivity of
m(f). Example: with µ being Lebesgue measure on [0, 1], take f(t) = t for all
t. Then m(f) is injective by Lemma 6.

::::::::
However,

:::::
m(f)

::
is

::::
not

:::::::::
surjective,

:::
by

::::
the

:::::::
criterion

:::
in

::::::::::
Proposition

:::::
7(4).

:

Problem 4 (Problem 8(c) in Chapter 5 of Rudin). Let E be a normed vector
space, and let (ξn)n∈Z>0

be a sequence in E. Suppose that limn→∞ ω(ξn) exists for
all ω ∈ E∗. Prove that (ξn)n∈Z>0

is bounded.

Solution. Let Λ: E → E∗∗ be the standard map, that is, Λ(ξ)(ω) = ω(ξ) for ξ ∈ E
and ω ∈ E∗. We have seen that ‖Λ(ξ)‖ = ‖ξ‖ for all ξ ∈ E.

For ω ∈ E∗, we have supn∈Z>0
|Λ(ξn)(ω)| = supn∈Z>0

|ω(ξn)|. Since limn→∞ ω(ξn)
exists, it follows that supn∈Z>0

|Λ(ξn)(ω)| <∞. So
:::::
Since

:::
E∗

::
is

:::::::::
complete,

:
the Uni-

form Boundedness Principle implies that supn∈Z>0
‖Λ(ξn)‖ < ∞. Therefore

::
So

supn∈Z>0
‖ξn‖ <∞. �


