MATH 617 (WINTER 2024, PHILLIPS): HOMEWORK 4

This homework assignment is due Wednesday 7 February 2024.

Problems and all other items use two independent numbering sequences. This is annoying, but necessary to preserve the problem numbers in the solution file.

Problem 1 (Problem 1 in Chapter 5 of Rudin). Let $X = \{a, b\}$, let $\alpha, \beta \in (0, \infty)$, and let $\mu_{\alpha,\beta}$ be the measure on X such that that $\mu_{\alpha,\beta}(\{a\}) = \alpha$ and $\mu_{\alpha,\beta}(\{b\}) = \beta$. In this problem, we use the spaces $L^p(X, \mu, \mathbb{R})$ of *real* valued L^p functions on X modulo functions vanishing almost everywhere. (In this problem, the only set of measure zero will be \emptyset .)

- (1) For $p \in (0, \infty]$ describe the closed unit ball of $L^p(X, \mu_{1,1}, \mathbb{R})$. In particular, show that it is convex if and only if $p \in [1, \infty]$, determine for which values of p it is a circle, and determine for which values of p it is a square. Draw pictures of these unit balls for representative choices of p, such as $p = 1, 2, \infty$ and some value of p in each of the intervals $(0, 1), (1, 2), \text{ and } (2, \infty)$.
- (2) Describe what happens to your solution to part (1) for $\alpha \neq \beta$, say for $\mu_{1,1/2}$ in place of $\mu_{1,1}$.

Problem 2 (Problems 2 and 3 in Chapter 5 of Rudin). This problem counts as two regular problems.

Three problems on convexity:

- (1) Let *E* be a Banach space. Prove that the closed unit ball *B* of *E* is convex, that is, if $\xi, \eta \in B$ and $\alpha \in [0, 1]$ then $(1 \alpha)\xi + \alpha\eta \in B$.
- (2) Let (X, μ) be a measure space, and let $p \in (1, \infty)$. Prove that the closed unit ball B of E is strictly convex, that is, if $\xi, \eta \in B$ are distinct and $\alpha \in (0, 1)$ then $\|(1-\alpha)\xi + \alpha\eta\| < 1$. (The statement means that the surface of the closed unit ball contains no straight line segments. You will need the criterion for equality in the triangle inequality for $\|\cdot\|_{p}$.)
- (3) Let E be any nontrivial space of the form C(X), L¹(X, μ), or L[∞](X, μ). Prove that the closed unit ball B of E is not strictly convex. (Part of the problem is to determine what "trivial" means. If X has only one point then E is certainly trivial for the purposes of this problem, but there are other ways for L¹(X, μ) and L[∞](X, μ) to be trivial.)

Problem 3 (Problem C). This problem counts as two regular problems.

Let (X, μ) be a measure space. For a measurable function f on X and $\alpha > 0$, define

$$\lambda_f(\alpha) = \mu(\{x \in X \colon |f(x)| > \alpha\}).$$

For $p \in [1, \infty)$ define

$$C_p(f) = \left(\sup_{\alpha>0} \alpha^p \lambda_f(\alpha)\right)^{1/p},$$

and define $L^p_{w}(\mu)$ ("weak $L^p(\mu)$ ") to be the set of measurable functions f on X such that $C_p(f) < \infty$ (modulo equality almost everywhere, as usual).

Prove the following:

(1)
$$C_p(f) \le ||f||_p$$
 and $L^p(\mu) \subset L^p_w(\mu)$.

Date: 31 January 2024.

- (2) $L^p_{w}(\mu)$ is a vector space. (Hint: prove $C_p(f+g) \leq 2(C_p(f)^p + C_p(g)^p)^{1/p}$ and $C_p(\beta f) = |\beta|C_p(f)$.)
- (3) C_1 need not be a norm.
- (4) If $\mu(X) < \infty$, then $L^p_w(\mu) \subset L^r(\mu)$ whenever $1 \le r < p$.

Remark 1. Some remarks on Problem 3:

- (1) Most of this problem is taken from Folland's book. (I didn't check the inequality in the hint in part (2) for correctness, but something similar is certainly true.)
- (2) The notation is mine, and is probably nonstandard. In another book, for the case of Lebesgue measure on \mathbb{R} , $L^p_{\mathrm{w}}(\mu)$ is called $L(p,\infty)$, and there are " L^p type spaces" L(p,r) for $1 \leq r \leq \infty$.
- (3) This is from my reading elsewhere (which actually only specifically talked about Lebesgue measure on \mathbb{R}). None of the functions C_p is a norm. But if p > 1, then there are norms on the spaces $L_{w}^{p}(\mu)$ which are equivalent to C_p (in the sense we usually apply to norms). With these norms, the spaces $L_{w}^{p}(\mu)$ are Banach spaces. The space $L_{w}^{1}(\mu)$ is a topological vector space, but metrizability and completeness were not mentioned.

 $\mathbf{2}$