
MATH 617 (WINTER 2024, PHILLIPS): SOLUTIONS TO

HOMEWORK 4

This homework assignment is due Wednesday 7 February 2024.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solution file.

Problem 1 (Problem 1 in Chapter 5 of Rudin). Let X = {a, b}, let α, β ∈ (0,∞),
and let µα,β be the measure on X such that that µα,β({a}) = α and µα,β({b}) = β.
In this problem, we use the spaces Lp(X,µ,R) of real valued Lp functions on X
modulo functions vanishing almost everywhere. (In this problem, the only set of
measure zero will be ∅.)

(1) For p ∈ (0,∞] describe the closed unit ball of Lp(X,µ1,1,R). In particular,
show that it is convex if and only if p ∈ [1,∞], determine for which values
of p it is a circle, and determine for which values of p it is a square. Draw
pictures of these unit balls for representative choices of p, such as p = 1, 2,∞
and some value of p in each of the intervals (0, 1), (1, 2), and (2,∞).

(2) Describe what happens to your solution to part (1) for α 6= β, say for µ1,1/2

in place of µ1,1.

Solution for (1). For p ∈ [1,∞), convexity is just the triangle inequality and ho-
mogeneity for ‖ · ‖p: for any ξ, η ∈ Lp(X,µ1,1) with ‖ξ‖p ≤ 1 and ‖η‖p ≤ 1, and
any λ ∈ [0, 1], we have

‖λξ + (1− λ)η‖p ≤ ‖λξ‖p + ‖(1− λ)η‖p = |λ|‖ξ‖p + |1− λ|‖η‖p
= λ‖ξ‖p + (1− λ)‖η‖p ≤ λ · 1 + (1− λ) · 1 = 1.

Now suppose p ∈ (0, 1). Let ξ, η ∈ Lp(X,µ1,1,R) be

ξ(x) =

{
1 x = a

0 x = b
and η(x) =

{
0 x = a

1 x = b

Then ‖ξ‖p = 1 and ‖η‖p = 1. However,

(
1
2ξ + 1

2η
)
(x) =

{
1
2 x = a
1
2 x = b,

so ∥∥ 1
2ξ + 1

2η
∥∥
p

=
(

1
2p + 1

2p

)1/p
= 2−1+1/p.

Since p < 1, we have −1 + 1
p > 0. Thus, 2−1+1/p > 1, and 1

2ξ + 1
2η is not in the

closed unit ball. This shows that the closed unit ball is not convex.
Here are pictures for p = 1

2 , p = 1 (this one is a square with diagonals on the

coordinate axes), p = 3
2 , p = 2 (this one is a circle), p = 3, and p =∞ (this one is

a square with sides parallel to the axes).

Date: 7 February 2024.
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Only p = 2 gives a circle, and only p = 1 and p =∞ give boundaries containing
any straight line segments. �

Solution for (2). Identify the set of all functions f : X → R (which as a vector
space is equal to Lp(X,µα,β) for every p ∈)0,∞] and all α, β ∈ R) with R2 via f 7→
(f(a), f(b)). Write ‖ · ‖p,α,β for the corresponding norm on R2. Thus, for (x, y) ∈
R2, we have ‖(x, y)‖p,α,β =

(
α|x|p + β|y|p

)1/p
when p 6= ∞ and ‖(x, y)‖∞,α,β =

max(|x|, |y|). Also, let Bp,α,β be the closed unit ball for ‖ · ‖p,α,β .
The closed unit ball for ‖ ·‖∞,α,β obviously doesn’t depend on α and β. So, from

now on, suppose p 6=∞.
Fix α, β > 0 and p ∈ (0,∞). Define Tp : R2 → R2 by Tp(x, y) =

(
α−1/px, β−1/py

)
.

Then ‖Tp(x, y)‖p,α,β = ‖(x, y)‖p,1,1. Therefore Tp(Bp,1,1) = Bp,α,β . Since Tp is a
linear bijection, this map preserves convexity and nonconvexity. Therefore, by
part (1), Bp,α,β is convex if and only if p ≥ 1.

The closed unit ball for p 6=∞ is gotten from the one for µp,1,1 by expanding or
contracting suitably on the x and y directions.

Here are pictures for µp,1,1/2 with p = 1
2 , p = 1 (this one is a rhombus with

diagonals on the coordinate axes), p = 3
2 , p = 2 (this one is an ellipse), p = 3, and

p =∞.
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The closed unit ball for p =∞ is the same as above. �

Problem 2 (Problems 2 and 3 in Chapter 5 of Rudin). This problem counts as
two regular problems.

Three problems on convexity:

(1) Let E be a Banach space. Prove that the closed unit ball B of E is convex,
that is, if ξ, η ∈ B and α ∈ [0, 1] then (1− α)ξ + αη ∈ B.

(2) Let (X,µ) be a measure space, and let p ∈ (1,∞). Prove that the closed
unit ball B of E is strictly convex, that is, if ξ, η ∈ B are distinct and
α ∈ (0, 1) then ‖(1−α)ξ+αη‖ < 1. (The statement means that the surface
of the closed unit ball contains no straight line segments. You will need the
criterion for equality in the triangle inequality for ‖ · ‖p.)

(3) Let E be any nontrivial space of the form C(X), L1(X,µ), or L∞(X,µ).
Prove that the closed unit ball B of E is not strictly convex. (Part of the
problem is to determine what “trivial” means. If X has only one point then
E is certainly trivial for the purposes of this problem, but there are other
ways for L1(X,µ) and L∞(X,µ) to be trivial.)

Solution to (1). Convexity is just the triangle inequality and homogeneity for the
norm: for any ξ, η ∈ E with ‖ξ‖ ≤ 1 and ‖η‖ ≤ 1, and any α ∈ [0, 1], we have

‖αξ + (1− α)η‖ ≤ ‖αξ‖+ ‖(1− α)η‖ = |α|‖ξ‖+ |1− α|‖η‖
= α‖ξ‖+ (1− α)‖η‖ ≤ α · 1 + (1− α) · 1 = 1.

(1)

This completes the solution. �

Solution to (2). We have to prove that if α ∈ (0, 1), ‖ξ‖ ≤ 1, ‖η‖ ≤ 1, and ‖αξ+(1−
α)η‖ = 1, then ξ = η. Under these conditions, we must have equality throughout (1)
in the solution to part (1). On the second line, this implies that

(2) ‖ξ‖ = ‖η‖ = 1.

On the first line, by the condition for equality in the triangle inequality for ‖ · ‖,
there is λ ≥ 0 such that λαξ = (1−α)η or there is λ ≥ 0 such that λ(1−α)η = αξ.
If λαξ = (1− α)η, then, by (2),

λα = ‖λαξ‖ = ‖(1− α)η‖ = 1− α.

Since 1− α 6= 0, we deduce that ξ = η. The case λ(1− α)η = αξ is similar. �

For (3), we give the solution as three theorems, one about each of the cases.
Each one contains the appropriate nontriviality condition, and a proof that this
condition implies failure of strict convexity of the closed unit ball. It also contains
a proof (not asked for in the problem) that the appropriate nontriviality condition
is equivalent to the space involved having dimension greater than 1.
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Theorem 1. Let X be a compact Hausdorff space. Then the following are equiv-
alent:

(1) dim(C(X)) > 1.
(2) X has at least two points.
(3) The closed unit ball of C(X) is not strictly convex.

Proof. We prove that (2) implies (3). Let x, y ∈ X be distinct. Choose disjoint
open sets U, V ⊂ X such that x ∈ U and y ∈ V . Choose continuous functions
f, k : X → [0, 1] such that f(x) = 1, supp(f) ⊂ U , k(y) = 1, and supp(k) ⊂ V . Set
g = f + h. Then g 6= f , 0 ≤ g ≤ 1, and the function h = 1

2f + 1
2g satisfies h(x) = 1

and 0 ≤ h ≤ 1. It follows that ‖f‖ = ‖g‖ = ‖h‖ = 1. Thus the closed unit ball of
L1(X,µ) is not strictly convex.

It is immediate that (1) implies (2). Since the closed unit ball of C is strictly
convex, it is obvious that (3) implies (1). �

For the rest of (3), we first give a lemma which helps identify the trivial cases.

Lemma 2. Let (X,M, µ) be a measure space. Let E ∈ M be a measurable set
such that µ(E) > 0 and such that for every F ∈M with F ⊂ E, either µ(F ) = 0 or
µ(E \F ) = 0. Then for every measurable function f : X → C there is a measurable
function g : X → C such that g(x) = f(x) for almost all x ∈ X and g is constant
on E.

Sketch of proof. The main difficulty is to identify what the constant value of g on E
should be. (It is possible, for example, that every one point subset of E has measure
zero.)

To deal with this, first assume that f is real valued. Then let r be the essential
supremum of f |E . For all s > r we have µ({x ∈ E : f(x) > s}) = 0. Also, if s < r
then µ({x ∈ E : f(x) > s}) > 0. (Otherwise the essential supremum of f |E would
be at most s.) But then µ({x ∈ E : f(x) ≤ s}) = 0. By considering sequences
sn ↘ r and sn ↗ r, it is now easy to see that f(x) = r for almost every x ∈ E. �

Theorem 3. Let (X,µ) be a measure space. Then the following are equivalent:

(1) dim(L1(X,µ)) > 1.
(2) There exist disjoint measurable sets E,F ⊂ X such that 0 < µ(E) < ∞

and 0 < µ(F ) <∞.
(3) The closed unit ball of L1(X,µ) is not strictly convex.

In (2), it isn’t enough to require that there be two distinct sets E and F with
finite strictly positive measure. Example: X = {0, 1, 2}, all subsets are measurable,
µ({0}) = 91 while µ({1}) = µ({2}) = 0, and E = {0, 1} and F = {0, 2}. It isn’t
enough to require that µ be nontrivial and that there be a proper subset E with
0 < µ(F ) < ∞; the same example works. It isn’t enough if even just one of the
conditions µ(E) <∞ and µ(F ) <∞ is omitted. Example: X = {0, 1}, all subsets
are measurable, µ({0}) = 91 while µ({1}) =∞, and E = {0} and F = {1}. It isn’t
enough to require that the set of equivalence classes of measurable functions have
dimension at least 2; the same example works.

Proof of Theorem 3. We prove that (2) implies (3). Set f = µ(E)−1χE and g =
µ(F )−1χF . Then f 6= g as elements of L1(X,µ), and ‖f‖1 = ‖g‖1 = 1. Moreover,
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the function h = 1
2f + 1

2g satisfies

‖h‖1 =

∫
X

h dµ =
1

2

∫
X

f dµ+
1

2

∫
X

g dµ =
1

2
+

1

2
= 1.

This shows that the closed unit ball of L1(X,µ) is not strictly convex.
Since the closed unit ball of C is strictly convex, it is obvious that (3) implies (1).
We prove that (1) implies (2). Let f, g ∈ L1(X,µ) be linearly independent. Since

f 6= 0, there is ε > 0 such that the set G =
{
x ∈ X : |f(x)| > ε

}
satisfies µ(G) > 0.

Since f ∈ L1(X,µ), we must have µ(G) <∞.
If G does not satisfy the hypotheses of Lemma 2, then it is easy to find disjoint

measurable sets E,F ⊂ G such that 0 < µ(E) <∞ and 0 < µ(F ) <∞. Otherwise,
by Lemma 2, we can assume f and g are constant on G, say with values α and β.
Clearly α 6= 0.

By linear independence, βf − αg is not the zero function. It vanishes on G and
is in L1(X,µ). Therefore there is δ > 0 such that the set

F =
{
x ∈ X : |βf(x)− αg(x)| > δ

}
satisfies µ(F ) > 0. Since βf − αg is an L1 function, we must have µ(F ) < ∞.
Take E = G. Then E and F disjoint measurable sets such that 0 < µ(E) <∞ and
0 < µ(F ) <∞. �

Theorem 4. Let (X,µ) be a measure space. Then the following are equivalent:

(1) dim(L∞(X,µ)) > 1.
(2) There exist disjoint measurable sets E,F ⊂ X such that µ(E) > 0 and

µ(F ) > 0.
(3) The closed unit ball of L∞(X,µ) is not strictly convex.

Some of the examples used for L1(X,µ) show that weaker conditions than (2)
are not enough for nontriviality.

Proof of Theorem 4. We prove that (2) implies (3). Set f = χE and g = χE∪F .
Then f 6= g as elements of L1(X,µ), because µ(F ) > 0, and ‖f‖∞ = ‖g‖∞ = 1,
because µ(E) > 0. Moreover, the function h = 1

2f + 1
2g satisfies Since µ(E) > 0,

this implies that ‖h‖∞ = 1 Thus the closed unit ball of L1(X,µ) is not strictly
convex.

Since the closed unit ball of C is strictly convex, it is obvious that (3) implies (1).
The proof that (1) implies (2) is essentially the same as the proof that (1)

implies (2) in Theorem 3: one just omits the parts of the argument used to show
that the sets involved have finite meaure. (These parts are in any case not valid
here.) �

Problem 3 (Problem C). This problem counts as two regular problems.
Let (X,µ) be a measure space. For a measurable function f on X and α > 0,

define
λf (α) = µ

({
x ∈ X : |f(x)| > α

})
.

For p ∈ [1,∞) define

Cp(f) =

(
sup
α>0

αpλf (α)

)1/p

,

and define Lpw(µ) (“weak Lp(µ)”) to be the set of measurable functions f on X
such that Cp(f) <∞ (modulo equality almost everywhere, as usual).
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Prove the following:

(1) Cp(f) ≤ ‖f‖p and Lp(µ) ⊂ Lpw(µ).

(2) Lpw(µ) is a vector space. (Hint: prove Cp(f + g) ≤ 2
(
Cp(f)p + Cp(g)p

)1/p
and Cp(βf) = |β|Cp(f).)

(3) C1 need not be a norm.
(4) If µ(X) <∞, then Lpw(µ) ⊂ Lr(µ) whenever 1 ≤ r < p.

Remark 5. Some remarks on Problem 3:

(1) Most of this problem is taken from Folland’s book. (I didn’t check the
inequality in the hint in part (2) for correctness, but something similar is
certainly true.)

(2) The notation is mine, and is probably nonstandard. In another book, for
the case of Lebesgue measure on R, Lpw(µ) is called L(p,∞), and there are
“Lp type spaces” L(p, r) for 1 ≤ r ≤ ∞.

(3) This is from my reading elsewhere (which actually only specifically talked
about Lebesgue measure on R). None of the functions Cp is a norm. But
if p > 1, then there are norms on the spaces Lpw(µ) which are equivalent to
Cp (in the sense we usually apply to norms). With these norms, the spaces
Lpw(µ) are Banach spaces. The space L1

w(µ) is a topological vector space,
but metrizability and completeness were not mentioned.

Solution to (1). For a measurable function f : X → C and α ∈ (0,∞), set Sf (α) =
{x ∈ X : |f(x)| > α}. Thus, λf (α) = µ(Sf (α)).

For any α ∈ (0,∞), we have the pointwise inequality of functions αχSf (α) ≤
|f |χSf (α). This inequality still holds when raised to the power p, so

αpµ(Sf (α)) ≤
∫
Sf (α)

|f |p dµ ≤
∫
X

|f |p dµ = ‖f‖pp.

Therefore (
sup
α>0

αpλf (α)

)1/p

≤ ‖f‖p.

This says that Cp(f) ≤ ‖f‖p. The relation Lp(µ) ⊂ Lpw(µ) is an immediate conse-
quence. �

Solution to (2). As in the solution to (1), for a measurable function f : X → C and
α ∈ (0,∞), set Sf (α) = {x ∈ X : |f(x)| > α}.

We prove the first part of the hint. If f, g : X → C are measurable and α ∈ (0,∞),
then one can have |(f + g)(x)| > α only if |f(x)| > α

2 or |g(x)| > α
2 . In particular,

Sf+g(α) ⊂ Sf (α/2) ∪ Sg(α/2).

It follows that

λf+g(α) ≤ λf (α/2) + λg(α/2).

Therefore

αpλf+g(α) ≤ 2p(α/2)pλf (α/2) + 2p(α/2)pλg(α/2).

Now, since supα>0 h(α/2) = supα>0 h(α) for any function h : (0,∞)→ R,

sup
α>0

αpλf+g(α) ≤ sup
α>0

2p(α/2)pλf (α/2) + sup
α>0

2p(α/2)pλg(α/2)

= sup
α>0

2pαpλf (α) + sup
α>0

2pαpλg(α).
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Since t 7→ tp and t 7→ t1/p are strictly increasing on (0,∞), this is the same as
saying

Cp(f + g)p ≤ 2p
(
Cp(f)p + Cp(g)p

)
or

Cp(f + g) ≤ 2
(
Cp(f)p + Cp(g)p

)1/p
.

The second part of the hint is trivial if β = 0. Otherwise, we observe that
|βf(x)| > α if and only if |f(x)| > α/|β|, so Sβf (α) = Sf (α/|β|). Therefore

sup
α>0

αpλβf (α) = sup
α>0

αpSf (α/|β|) = sup
α>0

(|β|α)pSf (α) = |β|p sup
α>0

αpλf (α).

Taking the 1/p power and using the fact that t 7→ t1/p is strictly increasing on
(0,∞), we get Cp(βf) = |β|Cp(f), as desired.

To prove the result, we simply observe that the first part of the hint implies that
if Cp(f) and Cp(g) are finite, then so is Cp(f +g), while the second part of the hint
implies that if Cp(f) is finite and β ∈ C then Cp(βf) is finite. �

Solution to (3). Take X = [0, 1] and take µ to be Lebesgue measure. Define

f(x) = x and g(x) = 1− x

for x ∈ [0, 1]. Then for α > 0 we have

αλf (α) = αλg(α) =

{
α(1− α) 0 < α ≤ 1

0 α > 1
and αλf+g(α) =

{
α 0 < α ≤ 1

0 α > 1.

It is easily checked that this gives C1(f) = C1(g) = 1
4 , and it is immediate that

C1(f + g) = 1. So C1(f + g) > C1(f) +C1(g), and the triangle inequality fails. �

Alternate solution to (3). Take X = (0, 1) and take µ to be Lebesgue measure.
Define

f(x) =
1

x
and g(x) =

1

1− x
for x ∈ [0, 1]. Then for α > 0 we have

αλf (α) = αλg(α) =

{
α 0 < α ≤ 1

1 α > 1.

So C1(f) = C1(g) = 1. However,

f(x) + g(x) =
1

x(1− x)
.

The minimum value of this function on (0, 1) is 4, occurring at x = 1
2 and nowhere

else in (0, 1). (This can be checked by the usual methods of elementary calculus.)
Therefore

C1(f + g) ≥ 4λf (4) = 4 > 2 = C1(f) + C1(g)

(One can show that C1(f + g) = 4, but this is a bit messy and is not necessary for
the problem.) �
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Second alternate solution to (3). Take X = (0, 2) and take µ to be Lebesgue mea-
sure. Define f = 1 + χ(0,1) and g = χ[1,2). Then for α > 0 we have

αλf (α) =


2α 0 < α ≤ 1

α 1 < α ≤ 2

0 α > 2

and αλg(α) =

{
α 0 < α ≤ 1

0 α > 1.

So C1(f) = C1(g) = 1. However, f + g = 2, so

αλf+g(α) =

{
2α 0 < α ≤ 2

0 α > 2.

Therefore C1(f + g) = 4 > 2 = C1(f) + C1(g). �

The usual solution to (4) uses Fubini’s Theorem. Here is the intended solution,
which does not use Fubini’s Theorem, although the version for counting measures
(a statement about changing the order of summation) is used.

It uses a lemma. (This is where the order of summation is interchanged.)

Lemma 6. Let a0, a1, . . . ∈ [0,∞), let r, p ∈ [1,∞) satisfy r < p, and assume that

sup
n∈Z>0

np
∞∑
k=n

ak <∞.

Then
∑∞
k=0(k + 1)rak <∞.

Proof. We have, using nonnegativity of the terms to justify interchanging the order
of summation at the third step,

∞∑
k=1

(k + 1)rak =

∞∑
k=0

k∑
n=0

[(n+ 1)r − nr]ak

=

∞∑
n=0

∞∑
k=n

[(n+ 1)r − nr]ak

=

∞∑
k=0

ak +

∞∑
n=1

(n+ 1)r − nr

np

(
np

∞∑
k=n

ak

)

≤
∞∑
k=0

ak +

(
sup
n∈Z>0

np
∞∑
k=n

ak

) ∞∑
n=1

(n+ 1)r − nr

np
.

Using the Mean Value Theorem and r ≥ 1, one checks that

(n+ 1)r − nr ≤ r(n+ 1)r−1

for n ∈ Z>0. Therefore

∞∑
n=1

(n+ 1)r − nr

np
≤ r

∞∑
n=1

(n+ 1)r−1

np
.

Since r < p, one can easily check that the series on the right converges, as follows.
Choose s ∈ R such that r < s < p. Then

lim
n→∞

(n+ 1)s

np
= 0,
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so the terms of this sequence are bounded: there is M ∈ (0,∞) such that

(n+ 1)s

np
< M

for all n ∈ Z>0. Then
∞∑
n=1

(n+ 1)r−1

np
=

∞∑
n=1

(
(n+ 1)s

np

)
(n+ 1)r−1−s ≤M

∞∑
n=1

(n+ 1)r−1−s,

which is finite since r − 1− s < −1.
Since also

∑∞
k=0 ak converges, it follows that

∑∞
k=0(k + 1)rak converges. �

Solution to (4). For n ∈ Z≥0, define

Xn =
{
x ∈ X : n ≤ |f(x)| < n+ 1

}
.

Then define g : X → R by g =
∑∞
n=0(n+ 1)χXn . Then |f | ≥ g,

so it is enough to prove that g is an Lr function. Now∫ 1

0

gr dµ =

∞∑
k=0

(k + 1)rµ(Xk)

and

sup
n∈Z>0

np
∞∑
k=n

µ(Xk) = sup
n∈Z>0

npµ

( ∞⋃
k=n

Xk

)
= sup
n∈Z>0

npµ
({
x ∈ X : |f(x)| > n

}
≤ sup
α∈(0,∞)

λf (α).

The desired result therefore follows by applying the lemma with ak = µ(Xk) for
k ∈ Z≥0. �


