MATH 617 (WINTER 2024, PHILLIPS): HOMEWORK 5

Problem 1 (Problem 4 parts (a) and (d) in Chapter 7 of Rudin). Each part of this problem counts as one normal problem.

Let $p \in[1, \infty]$.
(1) Let $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R})$. Imitate the proof of Theorem 7.14 of Rudin to show that the integral defining $(f * g)(x)$ exists for almost all x, that $f * g \in L^{p}(\mathbb{R})$, and that $\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}$. (For $p \in(1, \infty)$, you will need to use Hölder's inequality on carefully chosen functions involving powers of the ones you are given.)
(2) Prove that for every $\varepsilon>0$ there are nonzero $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R})$ such that

$$
\|f * g\|_{p}>(1-\varepsilon)\|f\|_{1}\|g\|_{p}
$$

Problem 2 (Problem 6 in Chapter 7 of Rudin). This problem counts as 1.5 ordinary problems. Do not use anything about polar coordinates from previous courses.

Let

$$
S^{d-1}=\left\{x \in \mathbb{R}^{d}:\|x\|=1\right\}
$$

be the unit sphere in \mathbb{R}^{d}. Show that every $x \in \mathbb{R}^{d} \backslash\{0\}$ has a unique representation $x=r z$ with $r \in(0, \infty)$ and $z \in S^{d-1}$. Thus, $\mathbb{R}^{d} \backslash\{0\}$ may be regarded as the Cartesian product $(0, \infty) \times S^{d-1}$.

Let m_{d} be Lebesgue measure on \mathbb{R}^{d}. Define a measure σ_{d-1} on S^{d-1} by

$$
\sigma_{d-1}(E)=d \cdot m_{d}(\{r z: z \in E \text { and } 0<r<1\})
$$

for every Borel set $E \subset S^{d-1}$. Prove that for every nonnegative Borel function $f: \mathbb{R}^{d} \rightarrow[0, \infty]$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f d m_{d}=\int_{0}^{\infty} r^{d-1}\left(\int_{S^{d-1}} f(r z) d \sigma_{d-1}(z)\right) d r \tag{1}
\end{equation*}
$$

Check that this coincides with familiar results when $d=2$ and when $d=3$.
Hint. Check that the formula is true when f is the characteristic function of a set of the form

$$
\left\{r z: z \in E \text { and } r_{1}<r<r_{2}\right\}
$$

for a Borel set $E \subset S^{d-1}$ and $0 \leq r_{1}<r_{2} \leq \infty$. Pass from these to characteristic functions of Borel sets in \mathbb{R}^{d}.

Problem 3 (Taken from some edition of Rudin, but not in the one I am working from). This problem counts as 1.5 ordinary problems. (There are a number of estimates to do. Be sure to prove that the hypotheses of the theorems you use are really satisfied.)

Use Fubini's Theorem and the relation

$$
\frac{1}{x}=\int_{0}^{\infty} e^{-x t} d t
$$

[^0]for $x>0$ to prove that
$$
\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{\sin (x)}{x} d x=\frac{\pi}{2}
$$

Remark 1. The function $f(x)=\frac{\sin (x)}{x}$ is not Lebesgue integrable on $(0, \infty)$, because

$$
\int_{0}^{\infty}\left|\frac{\sin (x)}{x}\right| d x=\infty
$$

The problem asserts the existence of the improper Riemann integral, not of the Lebesgue integral.

[^0]: Date: 7 February 2024.

