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HOMEWORK 5

Problem 1 (Problem 4 parts (a) and (d) in Chapter 7 of Rudin). Each part of
this problem counts as one normal problem.

Let p ∈ [1,∞].

(1) Let f ∈ L1(R) and g ∈ Lp(R). Imitate the proof of Theorem 7.14 of Rudin
to show that the integral defining (f ∗ g)(x) exists for almost all x, that
f ∗g ∈ Lp(R), and that ‖f ∗g‖p ≤ ‖f‖1‖g‖p. (For p ∈ (1,∞), you will need
to use Hölder’s inequality on carefully chosen functions involving powers of
the ones you are given.)

(2) Prove that for every ε > 0 there are nonzero f ∈ L1(R) and g ∈ Lp(R) such
that

‖f ∗ g‖p > (1− ε)‖f‖1‖g‖p.
Solution to part (1). As in the proof of Theorem 7.14 of Rudin, we may assume
that f and g are Borel functions, and we consider |f | and |g| first.

Our first objective is to show that if p <∞ then

(1)

∫ ∞
−∞

(∫ ∞
−∞
|f(x− t)g(t)| dt

)p
dx ≤ ‖f‖p1‖g‖pp,

in particular, that the outer integral exists. Let q be the conjugate exponent to p.
We apply Hölder’s inequality (in Theorem 3.5 of Rudin), in the form∫ ∞

−∞
h1(x)h2(x) dx ≤

(∫ ∞
−∞

h1(x)q dx

)1/q (∫ ∞
−∞

h2(x)p dx

)1/p

for nonnegative measurable functions h1 and h2. We take

h1(t) = |f(x− t)|1/q and h2(t) = |f(x− t)|1/p|g(t)|.
This gives∫ ∞
−∞
|f(x− t)g(t)| dt ≤

(∫ ∞
−∞
|f(x− t)| dt

)1/q (∫ ∞
−∞
|f(x− t)| · |g(t)|p dt

)1/p

= ‖f‖1/q1

(∫ ∞
−∞
|f(x− t)| · |g(t)|p dt

)1/p

.

So

(2)

(∫ ∞
−∞
|f(x− t)g(t)| dt

)p
≤ ‖f‖p/q1

∫ ∞
−∞
|f(x− t)| · |g(t)|p dt.

Now (x, t) 7→ |f(x − t)g(t)| is Borel, for the same reason as in the proof of Theo-
rem 7.14 of Rudin, and Lebesgue measure on R is σ-finite, so Fubini’s Theorem for
nonnegative functions implies that

x 7→
∫ ∞
−∞
|f(x− t)g(t)| dt
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is Borel. Thus the left hand side of (2) is also a Borel function of x. The right hand
side of (2) is also a Borel function of x, by Theorem 7.8 of Rudin applied to the L1

functions |f | and |g|p. Therefore, using the L1 norm estimate from Theorem 7.14
of Rudin at the second step and p

q + 1 = p at the third step, we get∫ ∞
−∞

(∫ ∞
−∞
|f(x− t)g(t)| dt

)p
dx ≤ ‖f‖p/q1

∫ ∞
−∞

(∫ ∞
−∞
|f(x− t)| · |g(t)|p dt

)
dx

≤ ‖f‖p/q1

(∫ ∞
−∞
|f | dm

)(∫ ∞
−∞
|g|p dm

)
≤ ‖f‖p1‖g‖pp.

This proves the claim.
For p =∞ the analog of (1) is that

(3) sup
x∈R

∫ ∞
−∞
|f(x− t)g(t)| dt ≤ ‖f‖1‖g‖∞.

This is obvious.
It is now immediate that

∫∞
−∞ |f(x− t)g(t)| dt <∞ for almost every x (for every

x if p =∞). Therefore
∫∞
−∞ f(x− t)g(t) dt exists for almost every x (for every x if

p =∞).
We next claim that the function

h(x) =

∫ ∞
−∞

f(x− t)g(t) dt

is measurable. For n ∈ Z>0 define

gn(x) =

{
g(x) |x| ≤ n and |g(x)| ≤ n
0 otherwise.

Then gn ∈ L1(R), so Theorem 7.8 of Rudin implies that

hn(x) =

∫ ∞
−∞

f(x− t)gn(t) dt

is measurable. For every x for which
∫∞
−∞ |f(x − t)g(t)| dt < ∞, the Dominated

Convergence Theorem implies that limn→∞ hn(x) = h(x). Thus, h is the pointwise
almost everywhere limit of measurable functions, hence measurable. This proves
the claim.

Now for p <∞ we get, using (1) at the second step,∫ ∞
−∞
|h| dm ≤

∫ ∞
−∞

(∫ ∞
−∞
|f(x− t)g(t)| dt

)p
dx ≤ ‖f‖p1‖g‖pp.

whence
‖f ∗ g‖p = ‖h‖p ≤ ‖f‖1‖g‖p.

For p =∞ we get, using (3) instead,

‖f ∗ g‖∞ ≤ sup
x∈R
|h(x)| ≤ sup

x∈R

∫ ∞
−∞
|f(x− t)g(t)| dt ≤ ‖f‖1‖g‖∞.

This completes the proof. �

The first two solutions to part (2) are written using functions normalized to
have ‖f‖1 = ‖g‖p = 1. This is neater in a sense, but not really needed, and not
normalizing would simplify the notation a little.
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Solution to part (2). We first assume p < ∞. Choose ρ ∈ (0, 1) so small that
ρ < 1− (1− ε)p. Define

f =

(
1

2ρ

)
χ[−ρ,ρ] and g =

(
1

21/p

)
χ[−1,1].

Then one checks directly that ‖f‖1 = ‖g‖p = 1. Let m be Lebesgue measure on R.
We have

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y) dy =

(
1

2ρ · 21/p

)∫ ρ

−ρ
χ[−1,1](x− y) dy

=

(
1

2ρ · 21/p

)∫ ρ

−ρ
χ[x−1, x+1](y) dy

=

(
1

2ρ · 21/p

)
m
(
[−ρ, ρ] ∩ [x− 1, x+ 1]

)

=



0 x ≤ −1− ρ
x+1+ρ
2ρ·21/p −1− ρ < x ≤ −1 + ρ

2ρ
2ρ·21/p −1 + ρ < x ≤ 1− ρ
1+ρ−x
2ρ·21/p 1− ρ < x ≤ 1 + ρ

0 1 + ρ < x.

Considering only the interval [−1 + ρ, 1− ρ], we get

‖f ∗ g‖pp ≥ [1− ρ− (−1 + ρ)](2−1/p)p = 1− ρ > (1− ε)p,

so ‖f ∗ g‖p > 1− ε = (1− ε)‖f‖1‖g‖p, as desired..
If p =∞, take f = χ[0,1] and g = 1. Then

‖f‖1 = ‖g‖∞ = 1 and f ∗ g = 1,

so ‖f ∗ g‖∞ = 1 > (1− ε)‖f‖1‖g‖∞. �

Alternate solution to part (2). We first assume p <∞. Instead of choosing f to be
a multiple of the characteristic function of a short interval, as in the first solution,
we choose g to be a multiple of the characteristic function of a long interval.

Choose M ∈ (0,∞) so large that 1
M < 1− (1− ε)p. Define

f =

(
1

2

)
χ[−1,1] and g =

(
1

(2M)1/p

)
χ[−M,M ].
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Then one checks directly that ‖f‖1 = ‖g‖p = 1. Let m be Lebesgue measure on R.
We have

(f ∗ g)(x) =

∫ ∞
−∞

f(y)g(x− y) dy =

(
1

2 · (2M)1/p

)∫ 1

−1
χ[−M,M ](x− y) dy

=

(
1

2 · (2M)1/p

)∫ 1

−1
χ[x−M,x+M ](y) dy

=

(
1

2 · (2M)1/p

)
m
(
[−1, 1] ∩ [x−M, x+M ]

)

=



0 x ≤ −M − 1
x+M+1

2·(2M)1/p
−M − 1 < x ≤ −M + 1

2
2·(2M)1/p

−M + 1 < x ≤M − 1
M+1−x
2·(2M)1/p

M − 1 < x ≤M + 1

0 M + 1 < x.

Considering only the interval [−M + 1, M − 1], we get

‖f ∗ g‖pp ≥ [M − 1− (−M + 1)]((2M)−1/p)p = 1− 1

M
> (1− ε)p,

so ‖f ∗ g‖p > 1− ε = (1− ε)‖f‖1‖g‖p, as desired..
If p =∞, take f = χ[0,1] and g = 1. Then

‖f‖1 = ‖g‖∞ = 1 and f ∗ g = 1,

so ‖f ∗ g‖∞ = 1 > (1− ε)‖f‖1‖g‖∞. �

Third solution to part (2). In this solution, we prove something stronger, and much
more interesting, namely that for every g ∈ Lp(R) (for every g ∈ C0(R) if p =∞)
there exists a sequence (fn)n∈Z>0

in L1(R) such that ‖fn‖1 = 1 for all n, and such
that limn→∞ ‖fn ∗ g‖p = ‖g‖p. In fact, the sequence (fn)n∈Z>0 will depend on
neither p nor the choice of the function g, and we will even get

lim
n→∞

‖fn ∗ g − g‖p = 0.

Choose any nonnegative continuous function f : R→ [0,∞) such that supp(f) ⊂
[−1, 1] and

∫∞
−∞ f dm = 1. Define fn(x) = nf(x/n).

First suppose that g ∈ Cc(X). Choose M such that supp(g) ⊂ [−M, M ]. If
p 6=∞, set

ε0 =
ε

21/p(M + 1)1/p
.

If p = ∞, set ε0 = 1
2ε. Use uniform continuity of g to choose δ > 0 such that

whenever s, t ∈ R satisfy |s − t| < δ, then |g(s) − g(t)| < ε0. Without loss of
generality δ < 1. Let n > 1/δ, so that supp(fn) ⊂ [−δ, δ]. A change of variables
allows us to rewrite the convolution as

(fn ∗ g)(x) =

∫ ∞
−∞

fn(t)g(x− t) dt.
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Also, from
∫∞
−∞ f dm = 1 we get

∫∞
−∞ fn dm = 1, whence

|(fn ∗ g)(x)− g(x)| =
∣∣∣∣∫ ∞
−∞

fn(t)g(x− t) dt−
∫ ∞
−∞

fn(t)g(x) dt

∣∣∣∣
≤
∫ ∞
−∞

fn(t)|g(x− t)− g(x)| dt.

The integrand on the right is zero whenever |t| ≥ δ, and also whenever |x| ≥M +δ.
For |t| < δ we have |g(x− t)− g(x)| < ε0. From

∫∞
−∞ fn dm = 1 we therefore get

|(fn ∗ g)(x)− g(x)| ≤ ε0
for all x. When p =∞, this tells us that ‖fn ∗g−g‖∞ ≤ ε0 < ε. So assume p 6=∞.
We have already observed that (fn ∗ g)(x) = g(x) = 0 for |x| ≥M + δ. Therefore

‖fn ∗ g − g‖p ≤
(∫ ∞
−∞
|(fn ∗ g)(x)− g(x)|p dx

)1/p

< [2(M + δ)εp0]1/p < 21/p(M + 1)1/pε0 = ε.

Now we consider an arbitrary function g ∈ Lp(R) (g ∈ C0(R) if p = ∞). Let
ε > 0. Choose h ∈ Cc(X) such that ‖h − g‖p < 1

3ε. Choose N so large that

‖fn ∗ h − h‖p < 1
3ε for all n ≥ N . One checks that fn ∗ g − fn ∗ h = fn ∗ (g − h).

Using the result of Part (a) and ‖fn‖1 = 1 for all n, we then get

‖fn ∗ g − g‖p ≤ ‖fn ∗ (g − h)‖p + ‖fn ∗ h− h‖p + ‖h− g‖p
≤ ‖fn‖1‖g − h‖p + ‖fn ∗ h− h‖p + ‖h− g‖p
< 1

3ε+ 1
3ε+ 1

3ε = ε

for all n ≥ N , as desired. �

Problem 2 (Problem 6 in Chapter 7 of Rudin). This problem counts as 1.5 ordi-
nary problems. Do not use anything about polar coordinates from previous courses.

Let

Sd−1 = {x ∈ Rd : ‖x‖ = 1}
be the unit sphere in Rd. Show that every x ∈ Rd \{0} has a unique representation
x = rz with r ∈ (0,∞) and z ∈ Sd−1. Thus, Rd \ {0} may be regarded as the
Cartesian product (0,∞)× Sd−1.

Let md be Lebesgue measure on Rd. Define a measure σd−1 on Sd−1 by

σd−1(E) = d ·md({rz : z ∈ E and 0 < r < 1})
for every Borel set E ⊂ Sd−1. Prove that for every nonnegative Borel function
f : Rd → [0,∞] we have

(4)

∫
Rd

f dmd =

∫ ∞
0

rd−1
(∫

Sd−1

f(rz) dσd−1(z)

)
dr.

Check that this coincides with familiar results when d = 2 and when d = 3.

Hint. Check that the formula is true when f is the characteristic function of a set
of the form {

rz : z ∈ E and r1 < r < r2
}

for a Borel set E ⊂ Sd−1 and 0 ≤ r1 < r2 ≤ ∞. Pass from these to characteristic
functions of Borel sets in Rd.
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Solution. (This solution is a little sketchy at one point, and omits the check of the
last sentence when d = 3.)

To do the first paragraph properly, we really want to show that h(r, z) = rz is
a homeomorphism h : (0,∞) × Sd−1 → Rd \ {0}. To prove this, we simply write
down the continuous inverse x 7→

(
‖x‖, (1/‖x‖)x

)
.

Next, we verify the formula (4). First, let E ⊂ Sd−1 be Borel, suppose 0 ≤ r1 <
r2 ≤ ∞, and set

R = {rz : z ∈ E and r1 ≤ r < r2} ∩ (Rd \ {0}).

(This set differs slightly from the set in the suggestion, but is easier to work with.)
We verify (4) for f = χR. Set

S = {rz : z ∈ E and 0 < r < 1}.

Using md(rF ) = rdmd(F ) for every Borel set F (Theorem 2.20(e) of Rudin, to-
gether with the identification of the factor appearing there as |det(T )|), from
r1S ⊂ r2S and R = r2S \ r1S we get

k ·md(R) = rd2σd−1(E)− rd1σd−1(E).

It is immediate to check that this is consistent with the right hand side of (4).
We next verify that (4) holds for the characteristic function of an open subset

U ⊂ Rd \ {0}. Choose a sequence of finite partitions Pn for n ∈ Z>0 of Sd−1 into
Borel sets such that Pn+1 refines Pn for every n, and such that the diameter of
each set in Pn is at most 2−n. The collections

Qn =

{[
k

2n
,
k + 1

2n

)
∩ (0,∞) : k ∈ Z and k ≥ 0

}
are partitions of (0,∞) with the same properties. Then (some detail omitted)
h−1(V ) ⊂ (0,∞)× Sd−1 is the increasing union of the sets

(5) Fn =
⋃
{A×B : A ∈ Pn, B ∈ Qn, and A×B ⊂ h−1(V )}.

Thus U is the increasing union of the sets h(Fn). For each n ∈ Z>0, the set h(Fn)
is a disjoint union of sets h(A×B) with A ∈ Pn and B ∈ Qn, and we proved above
that (4) holds for the characteristic functions of such sets. Therefore (4) holds for
χFn

by the version of the Monotone Convergence Theorem for series of nonnegative
functions. Thus (4) holds for χU by the usual version of the Monotone Convergence
Theorem.

It now follows from the Dominated Convergence Theorem that (4) holds for
the characteristic function of a bounded Gδ-set G ⊂ Rd \ {0}. Every bounded
Borel set F ⊂ Rd \ {0} is contained in a bounded Gδ-set G ⊂ Rd \ {0} such that
md(G \ F ) = 0. If md(F ) = 0, applying the first sentence to G, we see that both
sides of (4) for χG are zero. By monotonicity, both sides of (4) for χF are zero.
Thus, (4) holds for bounded Borel sets of measure zero. Letting F be an arbitrary
bounded Borel set and letting G be as before, we find that (4) holds for χG and
χG\F . Since everything is finite, we subtract, showing that (4) holds for χF .

Now let F ⊂ Rd \ {0} be an arbitrary Borel set. Applying the Monotone Con-
vergence Theorem to the characteristic functions of Fn = F ∩ Bn(0), we see that
(4) holds for χF . Writing an arbitrary nonnegative Borel function as the pointwise
increasing limit of simple nonnegative Borel functions and applying the Monotone
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Convergence Theorem once again, we see that (4) holds for arbitrary nonnegative
Borel functions on Rd \ {0}. Since md({0}) = 0, we may replace Rd \ {0} by Rd.

It remains to check that this gives the usual results in dimensions 2 and 3. We
give the solution only in dimension 2; dimension 3 is handled the same way.

Recall the usual formula:∫
R2

f dm2 =

∫ ∞
0

r

(∫ 2π

0

f
(
r cos(θ), r sin(θ)

)
dθ

)
dr.

We thus want to show that if f is a nonnegative Borel function on S1 ⊂ R2, then∫
S1

f dσ1 =

∫ 2π

0

f
(
cos(θ), sin(θ)

)
dθ.

Define g : B1(0) \ {0} → [0,∞] by

g(x, y) = f

(
x√

x2 + y2
,

y√
x2 + y2

)
.

That is, g(w) = f((1/‖w‖)w). Using the definition of σ1 at the first step, and Fubini
and the change of variables formula for the function k : (0, 1)×(0, 2π)→ B1(0)\{0}
given by k(r, θ) =

(
r cos(θ), r sin(θ)

)
at the second step, we get∫

S1

f dσ1 = 2

∫
B1(0)\{0}

g dm2 = 2

∫ 1

0

r

(∫ 2π

0

f
(
cos(θ), sin(θ)

)
dθ

)
dr

=

∫ 2π

0

f
(
cos(θ), sin(θ)

)
dθ,

as desired. �

It is essential for the argument that the union in (5) be disjoint, even when only
finitely many sets are involved (such as when U is bounded). The previous step
doesn’t help with the union of two sets of the form used when they are not disjoint.

Alternate solution (sketch). We describe a different method to verify the formula (4)
for the characteristic functions of arbitrary open sets. From this point on, the rest
of the proof is the same.

First, let E ⊂ Sd−1 be Borel, suppose 0 ≤ r1 < r2 ≤ ∞, and set

R(r1, r2, E) = {rz : z ∈ E and r1 ≤ r < r2} ∩ (Rd \ {0}).

One verifies (4) for f = χR(r1,r2,E) as in the first solution. Next, again with
0 ≤ r1 < r2 ≤ ∞, set

S(r1, r2, E) = {rz : z ∈ E and r1 < r < r2}.

Then S(r1, r2, E) is an increasing union

S(r1, r2, E) =

∞⋃
n=1

R
(
r1 + 1

n , r2, E
)
.

Applying the Monotone Convergence Theorem on both sides of (4), with fn =
χR(r1+1/n, r2, E), we see that (4) holds for f = χS(r1,r2,E). In particular, it holds for

the characteristic function of any open set of the form S(r1, r2, E) with E ⊂ Sd−1

open.
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Now we claim that (4) holds for any finite union of sets of the form S(r1, r2, E).
This is proved by induction on the size of the union. We know it holds for one such
set. So assume it holds for any union of n such sets, and let S1, S2, . . . , Sn+1 be
n+ 1 such sets. Set

E =

n+1⋃
k=1

Sk, F =

n⋃
k=1

Sk and G = F ∩ Sn+1 =

n⋃
k=1

(Sk ∩ Sn+1).

Each set Sk ∩Sn+1 is easily checked to be again of the form we are considering. So
the formula (4) holds for χF and χG by the induction hypothesis, and for χSn+1

by
the case n = 1. Since χE = χF + χSn+1

− χG and everything is finite, we conclude
that the formula (4) holds for χE . This completes the induction.

Now apply the Monotone Convergence Theorem to show that the formula (4)
holds for χE whenever E is a countable union of sets of the form S(r1, r2, E).

Next, one proves using easy point set topology arguments that every open subset
of Rd \ {0} is a countable union of sets of the form S(r1, r2, E) with E open. It
follows that (4) holds for χU for every open set U ⊂ Rd \ {0}. The conclusion for
arbitrary open sets U ⊂ Rd follows, because {0} has measure zero.

The proof is now completed as in the first solution. �

Second alternate solution (brief sketch). We could also verify (4) for characteristic
functions of Borel sets by showing that the collection C of sets E such that it holds
for χE is a monotone class containing all finite disjoint unions of sets h(A×B) with
A ⊂ (0,∞) and B ⊂ Sd−1 Borel. Using Theorem 7.3 of Rudin, it is easy to show
that every such class contains all Borel subsets of Rd \ {0}. The proof that C is a
monotone class is essentially the same as the proof of Theorem 7.6 of Rudin. �

Problem 3 (Taken from some edition of Rudin, but not in the one I am working
from). This problem counts as 1.5 ordinary problems. (There are a number of
estimates to do. Be sure to prove that the hypotheses of the theorems you use are
really satisfied.)

Use Fubini’s Theorem and the relation

1

x
=

∫ ∞
0

e−xt dt

for x > 0 to prove that

lim
a→∞

∫ a

0

sin(x)

x
dx =

π

2
.

Remark 1. The function f(x) = sin(x)
x is not Lebesgue integrable on (0,∞), be-

cause ∫ ∞
0

∣∣∣∣ sin(x)

x

∣∣∣∣ dx =∞.

The problem asserts the existence of the improper Riemann integral, not of the
Lebesgue integral.

Solution to Problem 3. We first claim that if a > 0 then∫ a

0

sin(x)

x
dx =

∫ ∞
0

(∫ a

0

e−xt sin(x) dx

)
dt.



MATH 617 (WINTER 2024): SOLUTIONS 5 9

Define f : [0,∞)× (0, a]→ R by f(t, x) = e−xt sin(x). Then f is continuous, hence
measurable. We have |f(t, x)| ≤ xe−xt for all t, x ∈ [0,∞), and an application of
Fubini’s Theorem for nonnegative functions shows that∫

[0,∞)×[0,a]
xe−xtd(m×m)(t, x) =

∫ a

0

(∫ ∞
0

xe−xt dt

)
dx =

∫ a

0

1 dx <∞.

It follows that f is integrable on [0,∞) × (0, a]. (Remembering to do this step
is a substantial part of the problem.) Now we may apply Fubini’s Theorem for
integrable functions to get∫ ∞

0

(∫ a

0

e−xt sin(x) dx

)
dt =

∫ a

0

(∫ ∞
0

e−xt sin(x) dt

)
dx =

∫ a

0

x−1 sin(x) dx.

This proves the claim.
We next claim that∫ a

0

e−xt sin(x) dx =
1

1 + t2
− e−at(cos(a) + t sin(a))

1 + t2
.

This is most easily done by writing sin(x) = 1
2i (e

ix−e−ix), combining the products
of exponentials, and doing some algebra after the integration is done. It can also
be done by two integrations by parts: one gets an equation for the integral, which
can be solved. Details are omitted.

Now we claim that

lim
a→∞

∫ ∞
0

e−at(cos(a) + t sin(a))

1 + t2
dt = 0.

To prove this, we estimate, for t ≥ 0:∣∣∣∣e−at(cos(a) + t sin(a))

1 + t2

∣∣∣∣ ≤ e−at(| cos(a)|+ t| sin(a)|)
1 + t2

≤ e−at(1 + t)

1 + t2
.

Separate estimates on [0, 1] and on [1,∞) show that

1 + t

1 + t2
≤ 2

for all t ≥ 0. Therefore∣∣∣∣∫ ∞
0

e−at(cos(a) + t sin(a))

1 + t2
dt

∣∣∣∣ ≤ ∫ ∞
0

2e−at dt =
2

a
,

from which the claim follows.
Now we prove the result. We have

lim
a→∞

∫ a

0

sin(x)

x
dx = lim

a→∞

∫ ∞
0

(∫ a

0

e−xt sin(x) dx

)
dt

=

∫ ∞
0

1

1 + t2
dt− lim

a→∞

∫ ∞
0

e−at(cos(a) + t sin(a))

1 + t2
dt

=

∫ ∞
0

1

1 + t2
dt =

π

2
.

This completes the proof. �

Remark 2. One can also use the Dominated Convergence Theorem to prove the
third claim, that

lim
a→∞

∫ ∞
0

e−at(cos(a) + t sin(a))

1 + t2
dt = 0.
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One must, of course, prove that for every sequence (an)n∈Z>0
in [0,∞) such that

limn→∞ an =∞, one has

lim
n→∞

∫ ∞
0

e−ant(cos(an) + t sin(an))

1 + t2
dt = 0.

One part, pointwise convergence of the integrand to zero almost everywhere, is easy.
The other part requires a nonnegative integrable function g : [0,∞)→ R such that∣∣∣∣e−at(cos(a) + t sin(a))

1 + t2

∣∣∣∣ ≤ g(t)

for all a ∈ [0,∞) and t ∈ [0,∞). In fact, one easily sees that it is enough to find
g and some N > 0 such that this estimate holds for all a ∈ [N,∞) and t ∈ [0,∞).
We sketch two possibilities.

First, the proof above shows that∣∣∣∣e−at(cos(a) + t sin(a))

1 + t2

∣∣∣∣ ≤ 2e−at

for all a ∈ [0,∞) and t ∈ [0,∞). Therefore the estimate holds for a ≥ 1 with
g(t) = 2e−t.

Second, the proof above shows that∣∣∣∣e−at(cos(a) + t sin(a))

1 + t2

∣∣∣∣ ≤ e−at(1 + t)

1 + t2
≤ 1 + te−at

1 + t2

for all a ∈ [0,∞) and t ∈ [0,∞). If a ≥ 1 then te−at ≤ te−t ≤ 1, so the estimate
holds for a ≥ 1 with g(t) = 2

1+t2 .


