MATH 617 (WINTER 2024, PHILLIPS): HOMEWORK 6

Problem 1 (Problem 5 in Chapter 7 of Rudin). This problem counts as five regular problems.

Let M be the Banach space of all complex Borel measures on \mathbb{R}. Recall that $\|\mu\|=|\mu|(\mathbb{R})$ for $\mu \in M$.

Let $s: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $s(x, y)=x+y$ for $x, y \in \mathbb{R}$. For $\mu, \nu \in M$, define $\mu * \nu$ to be the set function given by $(\mu * \nu)(E)=(\mu \times \nu)\left(s^{-1}(E)\right)$ for every Borel set $E \subset \mathbb{R}$. (The function $\mu * \nu$ is called the convoluton of μ and ν.)
(1) Let $\mu, \nu \in M$. Prove that $\mu * \nu$ is a complex Borel measure on \mathbb{R} which satisfies $\|\mu * \nu\| \leq\|\mu\|\|\nu\|$.
(2) Let $\mu, \nu \in M$. Prove that $\mu * \nu$ is the unique measure $\lambda \in M$ which satisfies

$$
\int_{\mathbb{R}} f d \lambda=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x+y) d \mu(x)\right) d \nu(y)
$$

for all $f \in C_{0}(\mathbb{R})$.
(3) Prove that the operation $(\mu, \nu) \mapsto \mu * \nu$, from $M \times M$ to M, is commutative, associative, distributes over addition, and satisfies $\alpha(\mu * \nu)=\alpha \mu * \nu=\mu * \alpha \nu$ for all $\alpha \in \mathbb{C}$. (Thus, M, with multiplication defined by $\mu \cdot \nu=\mu * \nu$, is a commutative algebra over \mathbb{C}. Since we already know that M is a Banach space, the inequality in (1) now means that M is in fact a complex Banach algebra.)
(4) Let $\mu, \nu \in M$. Prove that for every Borel set $E \subset \mathbb{R}$,

$$
(\mu * \nu)(E)=\int_{\mathbb{R}} \mu(\{x-t: x \in E\}) d \nu(t)
$$

(5) Say that $\mu \in M$ is discrete if there is a countable set $S \subset \mathbb{R}$ such that $\mathbb{R} \backslash S$ is μ-null, and say that $\mu \in M$ is continuous if $\mu(\{x\})=0$ for every $x \in \mathbb{R}$. Prove that if $\mu, \nu \in M$ are both discrete, then $\mu * \nu$ is discrete. Prove that if $\mu, \nu \in M$ and μ is continuous, then $\mu * \nu$ is continuous.
(6) As usual, let m be Lebesgue measure on \mathbb{R}. (Note that $m \notin M$.) Prove that if $\mu, \nu \in M$ and $\mu \ll m$, then $\mu * \nu \ll m$.
(7) Prove that the discrete measures form a closed subalgebra of M and that the continuous measures form a closed ideal in M.
(8) Recall that if λ is a (nonnegative) measure on (X, \mathcal{M}) and $f: X \rightarrow \mathbb{C}$ is integrable or nonnegative, then $f \cdot \lambda$ is the (complex or nonnegative) measure on X defined by $(f \cdot \lambda)(E)=\int_{E} f d \lambda$. Prove that $f \mapsto f \cdot m$ defines an isometric linear map which preserves the multiplication given by convolution from $L^{1}(\mathbb{R})$ to $\{\mu \in M: \mu \ll m\}$. Use this fact to prove that the operation $(f, g) \mapsto f * g$ makes $L^{1}(\mathbb{R})$ a commutative Banach algebra. Also prove that $\{\mu \in M: \mu \ll m\}$ is a closed ideal in M.
(9) Prove that the algebra M is unital, but that $L^{1}(\mathbb{R})$ is not unital.

[^0]You may use without proof the obvious analog of Fubini's Theorem for complex measures. It is proved by writing each complex measure as a linear combination of four nonnegative measures, but the product then has 16 terms. Alternatively
Hint for Part (9). The easiest way to show that $L^{1}(\mathbb{R})$ is not unital is to see what would happen to an identity element under the Fourier transform map $f \mapsto \widehat{f}$. Feel free to use that, even if we haven't yet discussed Fourier transforms.

A more useful method, because it generalizes better, to to prove (using the definitions in a previous homework problem) a sufficient special case of the fact that if $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$, then $f * g$ is continuous.

Almost all of this works for any locally compact Hausdorff group G in place of \mathbb{R}, and with a (left) Haar measure μ in place of m. The algebra is then called $M(G)$, the measure algebra of G. The algebra $L^{1}(G)$ is unital if and only if G has the discrete topology; in this case, the Haar measure can be taken to be counting measure, and $M(G)=L^{1}(G, \mu)$. If G is not commutative, one must be a little more careful with the formulas. The outcome is that commutativity of G, of $M(G)$, and of $L^{1}(G)$, are all equivalent.

[^0]: Date: 14 February 2024.

