
MATH 617 (WINTER 2024, PHILLIPS): SOLUTIONS TO

HOMEWORK 6

Essentially no proofreading has been done, and there are slight gaps.

Problem 1 (Problem 5 in Chapter 7 of Rudin). This problem counts as five regular
problems.

Let M be the Banach space of all complex Borel measures on R. Recall that
‖µ‖ = |µ|(R) for µ ∈M .

Let s : R2 → R be the function s(x, y) = x+ y for x, y ∈ R. For µ, ν ∈M , define
µ ∗ ν to be the set function given by (µ ∗ ν)(E) = (µ× ν)(s−1(E)) for every Borel
set E ⊂ R. (The function µ ∗ ν is called the convoluton of µ and ν.)

(1) Let µ, ν ∈ M . Prove that µ ∗ ν is a complex Borel measure on R which
satisfies ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖.

(2) Let µ, ν ∈M . Prove that µ∗ν is the unique measure λ ∈M which satisfies∫
R
f dλ =

∫
R

(∫
R
f(x+ y) dµ(x)

)
dν(y)

for all f ∈ C0(R).
(3) Prove that the operation (µ, ν) 7→ µ∗ν, from M×M to M , is commutative,

associative, distributes over addition, and satisfies α(µ∗ν) = αµ∗ν = µ∗αν
for all α ∈ C. (Thus, M , with multiplication defined by µ · ν = µ ∗ ν, is a
commutative algebra over C. Since we already know that M is a Banach
space, the inequality in (1) now means that M is in fact a complex Banach
algebra.)

(4) Let µ, ν ∈M . Prove that for every Borel set E ⊂ R,

(µ ∗ ν)(E) =

∫
R
µ
({
x− t : x ∈ E

})
dν(t).

(5) Say that µ ∈M is discrete if there is a countable set S ⊂ R such that R\S
is µ-null, and say that µ ∈M is continuous if µ({x}) = 0 for every x ∈ R.
Prove that if µ, ν ∈M are both discrete, then µ ∗ ν is discrete. Prove that
if µ, ν ∈M and µ is continuous, then µ ∗ ν is continuous.

(6) As usual, let m be Lebesgue measure on R. (Note that m 6∈ M .) Prove
that if µ, ν ∈M and µ� m, then µ ∗ ν � m.

(7) Prove that the discrete measures form a closed subalgebra of M and that
the continuous measures form a closed ideal in M .

(8) Recall that if λ is a (nonnegative) measure on (X,M) and f : X → C
is integrable or nonnegative, then f · λ is the (complex or nonnegative)
measure on X defined by (f · λ)(E) =

∫
E
f dλ. Prove that f 7→ f · m

defines an isometric linear map which preserves the multiplication given by
convolution from L1(R) to

{
µ ∈ M : µ � m

}
. Use this fact to prove that

the operation (f, g) 7→ f ∗ g makes L1(R) a commutative Banach algebra.
Also prove that

{
µ ∈M : µ� m

}
is a closed ideal in M .
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(9) Prove that the algebra M is unital, but that L1(R) is not unital.

You may use without proof the obvious analog of Fubini’s Theorem for complex
measures. It is proved by writing each complex measure as a linear combination of
four nonnegative measures, but the product then has 16 terms. Alternatively

Hint for Part (9). The easiest way to show that L1(R) is not unital is to see what

would happen to an identity element under the Fourier transform map f 7→ f̂ . Feel
free to use that, even if we haven’t yet discussed Fourier transforms.

A more useful method, because it generalizes better, to to prove (using the
definitions in a previous homework problem) a sufficient special case of the fact
that if f ∈ L1(R) and g ∈ L∞(R), then f ∗ g is continuous.

Almost all of this works for any locally compact Hausdorff group G in place
of R, and with a (left) Haar measure µ in place of m. The algebra is then called
M(G), the measure algebra of G. The algebra L1(G) is unital if and only if G has
the discrete topology; in this case, the Haar measure can be taken to be counting
measure, and M(G) = L1(G,µ). If G is not commutative, one must be a little more
careful with the formulas. The outcome is that commutativity of G, of M(G), and
of L1(G), are all equivalent.

Solution to Part (1). We need to know that µ ∗ ν is defined, that is, that s−1(E) is
in the product σ-algebra of two copies of the Borel subsets of R when E is Borel.
This is immediate from two facts: first, the product σ-algebra of two copies of the
Borel subsets of R is exactly the Borel subsets of R2, and if E is Borel then s−1(E)
is Borel. The first fact was proved in the proof that Lebesgue measure on R2 is
the product of two copies of Lebesgue measure on R. The second follows from
continuity of s.

That µ ∗ ν is a complex measure is now immediate from the fact that inverse
images preserve countable disjoint unions and ∅.

For the norm estimate, we first claim that |µ× ν| = |µ| × |ν| To prove the claim,
write µ = h · |µ| and µ = k · |ν for Borel functions h, k : R → C with |h(x)| = 1
and |k(x)| = 1 for all x ∈ R. Then, using Fubini’s Theorem at the first and third
steps (the measurability criterion is immediate), if f : R2 → C is a bounded Borel
function, then∫

R×R
f d(µ× ν) =

∫
R

(∫
R
f(x, y) dµ(x)

)
dν(y)

=

∫
R

(∫
R
f(x, y)h(x) d|µ|(x)

)
k(y) d|ν|(y) =

∫
R×R

fl d(|µ| × |ν|).

In particular, if E ⊂ R× R is Borel, taking f = χE gives

(µ× ν)(E) =

∫
E

l d(|µ| × |ν|).

Since E is an arbitrary Borel set and |l(x, y)| = 1 for all x, y ∈ R, this implies the
claim.

To prove the norm estimate, we need to show that if (En)n∈Z>0
is a family of

disjoint Borel sets such that R =
∐∞

n=1En, then
∑∞

n=1 |(µ ∗ ν)(En)| ≤ ‖µ‖‖ν‖. We
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have
∞∑

n=1

|(µ ∗ ν)(En)| =
∞∑

n=1

|(µ× ν)(s−1(En))| ≤
∞∑

n=1

|µ× ν|(s−1(En))

=

∞∑
n=1

(
|µ| × |ν|

)
(s−1(En)) =

(
|µ| × |ν|

)
(R2)

= |µ|(R) · |ν|(R) = ‖µ‖‖ν‖.

This completes the proof. �

Alternate proof of the norm estimate in Part (1). We need to show that if (En)n∈Z>0

is a family of disjoint Borel sets such that

(1) R =

∞∐
n=1

En,

then
∑∞

n=1 |(µ ∗ ν)(En)| ≤ ‖µ‖‖ν‖. We have, using the Monotone Convergence
Theorem at the sixth step and (1) and countable additivity of |µ| at the seventh
step,

∞∑
n=1

|(µ ∗ ν)(En)| =
∞∑

n=1

|(µ× ν)(s−1(En))|

=

∞∑
n=1

∣∣∣∣∫
R
ν
({
y ∈ R : (x, y) ∈ s−1(En)

})
dµ(x)

∣∣∣∣
=

∞∑
n=1

∣∣∣∣∫
R
ν
({
y ∈ R : x+ y ∈ En

})
dµ(x)

∣∣∣∣
≤
∞∑

n=1

∫
R

∣∣ν({y ∈ R : x+ y ∈ En

})∣∣ d|µ|(x)

≤
∞∑

n=1

∫
R
|ν|
({
y ∈ R : x+ y ∈ En

})
d|µ|(x)

=

∫
R

∞∑
n=1

|ν|
({
y ∈ R : x+ y ∈ En

})
d|µ|(x)

=

∫
R
|ν|(R) d|µ|(x) = |µ|(R) · |ν|(R) = ‖µ‖‖ν‖.

This completes the proof. �

Solution to Part (2). The Riesz Representation Theorem for C0(R) implies the
such a measure λ is unique.

We must therefore prove that λ satisfies the condition. For a Borel set E ⊂ R,
we have χs−1(E)(x, y) = χE(x + y). Therefore, using Fubini’s Theorem at the last
step, ∫

R
χE d(µ ∗ ν) = (µ ∗ ν)(E) = (µ× ν)(s−1(E))

=

∫
R×R

χs−1(E) d(µ× ν) =

∫
R

(∫
R
χE(x+ y) dµ(x)

)
dν(y).

(2)
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Thus, the required formula holds for characteristic functions of Borel sets. Therefore
it holds for Borel simple functions. Since every bounded Borel function is a uniform
limit of Borel simple functions and the measures are finite, the formula holds for
all bounded Borel functions, and in particular for all functions in C0(R). �

Solution to Part (3). No solution has been written yet, but, using Fubini’s Theorem
multiple times, everything here is essentially immediate. (Commutativity uses the
fact that the group R is commutative. Associativity uses associativity of addition
in R.) �

Solution to Part (4). This follows from (2) (as written: for the characteristic func-
tion of a Borel set E) together with the fact that∫

R
χE(x+ y) dµ(x) = µ

({
x− t : x ∈ E

})
for every Borel set E. �

Solution to Part (5). I didn’t find a definition of µ-null in the edition of Rudin’s
book I am using. Here, however, are two equivalence characterizations (for any
complex measure on (X,M):

(1) E ∈M is µ-null if |µ|(E) = 0.
(2) E ∈M is µ-null if whenever F ⊂ E is in M, then µ(F ) = 0.

That (1) implies (2) follows from the fact that |µ|(E) is the supremum over all
measurable partitions E =

∐∞
n=1En of

∑∞
n=1 |µ(En)|, by takinf E1 = F . The

reverse implication is immediate from the same relation.
For the part about discrete measures, choose subsets E,F ⊂ R such that R \ E

is µ-null and R \F is ν-null. Set S = E+F , which is also countable. If Y ⊂ R \S,
then x ∈ Y and y ∈ F imply x− y ∈ R \ E. Thus, x ∈ Y implies that

{
x− y : x ∈

Y
}
⊂ R \ F . Therefore, by Part (4),

(µ ∗ ν)(Y ) =

∫
R
µ
({
x− y : x ∈ Y

})
dν(y) =

∫
R

0 dν(y) = 0.

For the part about continuous measures, let z ∈ R. Then, by Part (4),

(µ ∗ ν)({z}) =

∫
R
µ
({
x− t : x ∈ {z}

})
dν(t) =

∫
R
µ({z − t}) dν(t) =

∫
R

0 dν(t) = 0.

This completes the solution. �

Solution to Part (6). Let E ⊂ R be a Borel set such that m(E) = 0. By translation
invariance of m, for all y ∈ R, we also have m

({
x − y : x ∈ E

})
= 0, so that also

µ
({
x− y : x ∈ E

})
= 0. By Part (4),

(µ ∗ ν)(E) =

∫
R
µ
({
x− y : x ∈ E

})
dν(y) =

∫
R

0 dν(y) = 0.

This completes the solution. �

Solution to Part (7). It is easy to see that both the sets of discrete and continuous
measues are vector subspaces of M ; proofs are omitted. The algebraic statements
involving products in both parts are immediate from Part (5).

We claim that that the set of discrete measures is closed. Let (µn)n∈Z>0
be

a sequence of discrete measures which converges (in norm) to a measure µ. For
n ∈ Z>0 choose a countable set Sn ⊂ R such that R\Sn is µn-null. Set S =

⋃∞
n=1 Sn,
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which is a countable set such that R \ S is µn-null for all n ∈ Z>0. Then for
E ⊂ R \ S, we have µ(E) = limn→∞ µn(E) = limn→∞ 0 = 0. Thus R \ S is µ-null,
so µ is discrete. The claim is proved.

We claim that the set of continuous measures is closed. Let (µn)n∈Z>0
be a se-

quence of continuous measures which converges (in norm) to a measure µ. For every
x ∈ R, we have µ({x}) = limn→∞ µn({x}) = limn→∞ 0 = 0. So µ is continuous.
The claim is proved. �

Solution to Part (8) (sketch). It follows from Theorem 6.13 of Rudin’s book that
f 7→ f ·m is linear and isometric from L1(R) to M . Therefore its range is a closed
subspace.

Preservation of convolution is a computation (which requires Fubini’s Theorem);
not yet written. Since we already showed that M is a commutative Banach algebra,
this shows that L1(R) is isometrically isomorphic to a closed subalgebra of M , and
is hence a commutative Banach algebra.

The ideal property follows from Part (6). �

It is also easy to prove directly that
{
µ ∈M : µ� m

}
is closed in M .

Solution to Part (9). For x ∈ M let δx be the “point mass measure at x”, that is,
for a Borel set E ⊂ R,

δx(E) =

{
1 x ∈ E
0 x 6∈ E.

(The notation, and its generalizations, is fairly standard.) Then δx ∈ M for all
x ∈ R.

We claim that δ0 is an identity for M . By commutativity, it is enough to show
that µ ∗ δ0 = µ for every µ ∈M . Recall from Part (4) that is µ, ν ∈M , E ⊂ R is a
Borel set, and for t ∈ R we define Ft ⊂ R by Ft =

{
x− t : x ∈ E

}
, then

(µ ∗ ν)(E) =

∫
R
µ(Ft) dν(t).

Putting ν = δ0 and using F0 = E, we get (µ ∗ δ0)(E) = µ(F0) = µ(E).
We now show that L1(R) does not have an identity. The easiest way to do this

is to consider the map ϕ : L1(R) → C0(R) given by ϕ(f) = f̂ for f ∈ L1(R). This
map is well defined by Theorem 9.6 of Rudin’s book, it is a homomorphism by
Theorem 9.2(c) of Rudin’s book, and it is injective by Theorem 9.12 of Rudin’s
book. If L1(R) had an identity e, then ϕ(e) ∈ C0(R) would be a nonzero element
satisfying ϕ(e)2 = ϕ(e). Clearly no such nonzero element exists. �

Alternate solution to Part (9). We first claim that if f ∈ L1(R) and a, b ∈ R satisfy
a < b, then f ∗χ[a,b] is continuous. To prove the claim, let ε > 0, and choose δ0 > 0

so small that whenever E ⊂ R is measurable and m(E) < δ0, then
∫
E
|f | dm < ε.

(That this can be done is a standard fact for L1(X,µ) for any positive measure ν,
and should have been done in Math 616.) Set δ = 1

2δ0.
For any t ∈ R, we have

(f ∗ χ[a,b])(t) =

∫
R
f(s)χ[a,b](t− s) dm(s) =

∫ t−a

t−b
f dm.

Therefore, if t1, t2 ∈ R with |t1 − t2| < δ, the symmestric difference

E = [t1 − b, t1 − a]4[t2 − b, t2 − a]
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satisfies m(E) < 2δ = δ0, so∣∣(f ∗ χ[a,b])(t1)− (f ∗ χ[a,b])(t2)
∣∣ =

∣∣∣∣∫
E

f dm

∣∣∣∣ ≤ ∫
E

|f | dm < ε.

This proves the claim.
If now f ∈ L1(R) is an identity for L1(R), then f ∗ χ[−1,1] = χ[−1,1] almost

everywhere. The function f ∗ χ[−1,1] is continuous. But there is no continuous
function g such that g = χ[−1,1], since, if there were, the indefinite integral F of
χ[−1,1] would be differentiable everywhere, which is not the case. �


