MATH 617 (WINTER 2024, PHILLIPS): SOLUTIONS TO HOMEWORK 6

Essentially no proofreading has been done, and there are slight gaps.
Problem 1 (Problem 5 in Chapter 7 of Rudin). This problem counts as five regular problems.

Let M be the Banach space of all complex Borel measures on \mathbb{R}. Recall that $\|\mu\|=|\mu|(\mathbb{R})$ for $\mu \in M$.

Let $s: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $s(x, y)=x+y$ for $x, y \in \mathbb{R}$. For $\mu, \nu \in M$, define $\mu * \nu$ to be the set function given by $(\mu * \nu)(E)=(\mu \times \nu)\left(s^{-1}(E)\right)$ for every Borel set $E \subset \mathbb{R}$. (The function $\mu * \nu$ is called the convoluton of μ and ν.)
(1) Let $\mu, \nu \in M$. Prove that $\mu * \nu$ is a complex Borel measure on \mathbb{R} which satisfies $\|\mu * \nu\| \leq\|\mu\|\|\nu\|$.
(2) Let $\mu, \nu \in M$. Prove that $\mu * \nu$ is the unique measure $\lambda \in M$ which satisfies

$$
\int_{\mathbb{R}} f d \lambda=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x+y) d \mu(x)\right) d \nu(y)
$$

for all $f \in C_{0}(\mathbb{R})$.
(3) Prove that the operation $(\mu, \nu) \mapsto \mu * \nu$, from $M \times M$ to M, is commutative, associative, distributes over addition, and satisfies $\alpha(\mu * \nu)=\alpha \mu * \nu=\mu * \alpha \nu$ for all $\alpha \in \mathbb{C}$. (Thus, M, with multiplication defined by $\mu \cdot \nu=\mu * \nu$, is a commutative algebra over \mathbb{C}. Since we already know that M is a Banach space, the inequality in (1) now means that M is in fact a complex Banach algebra.)
(4) Let $\mu, \nu \in M$. Prove that for every Borel set $E \subset \mathbb{R}$,

$$
(\mu * \nu)(E)=\int_{\mathbb{R}} \mu(\{x-t: x \in E\}) d \nu(t)
$$

(5) Say that $\mu \in M$ is discrete if there is a countable set $S \subset \mathbb{R}$ such that $\mathbb{R} \backslash S$ is μ-null, and say that $\mu \in M$ is continuous if $\mu(\{x\})=0$ for every $x \in \mathbb{R}$. Prove that if $\mu, \nu \in M$ are both discrete, then $\mu * \nu$ is discrete. Prove that if $\mu, \nu \in M$ and μ is continuous, then $\mu * \nu$ is continuous.
(6) As usual, let m be Lebesgue measure on \mathbb{R}. (Note that $m \notin M$.) Prove that if $\mu, \nu \in M$ and $\mu \ll m$, then $\mu * \nu \ll m$.
(7) Prove that the discrete measures form a closed subalgebra of M and that the continuous measures form a closed ideal in M.
(8) Recall that if λ is a (nonnegative) measure on (X, \mathcal{M}) and $f: X \rightarrow \mathbb{C}$ is integrable or nonnegative, then $f \cdot \lambda$ is the (complex or nonnegative) measure on X defined by $(f \cdot \lambda)(E)=\int_{E} f d \lambda$. Prove that $f \mapsto f \cdot m$ defines an isometric linear map which preserves the multiplication given by convolution from $L^{1}(\mathbb{R})$ to $\{\mu \in M: \mu \ll m\}$. Use this fact to prove that the operation $(f, g) \mapsto f * g$ makes $L^{1}(\mathbb{R})$ a commutative Banach algebra. Also prove that $\{\mu \in M: \mu \ll m\}$ is a closed ideal in M.

[^0](9) Prove that the algebra M is unital, but that $L^{1}(\mathbb{R})$ is not unital.

You may use without proof the obvious analog of Fubini's Theorem for complex measures. It is proved by writing each complex measure as a linear combination of four nonnegative measures, but the product then has 16 terms. Alternatively

Hint for Part (9). The easiest way to show that $L^{1}(\mathbb{R})$ is not unital is to see what would happen to an identity element under the Fourier transform map $f \mapsto \widehat{f}$. Feel free to use that, even if we haven't yet discussed Fourier transforms.

A more useful method, because it generalizes better, to to prove (using the definitions in a previous homework problem) a sufficient special case of the fact that if $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$, then $f * g$ is continuous.

Almost all of this works for any locally compact Hausdorff group G in place of \mathbb{R}, and with a (left) Haar measure μ in place of m. The algebra is then called $M(G)$, the measure algebra of G. The algebra $L^{1}(G)$ is unital if and only if G has the discrete topology; in this case, the Haar measure can be taken to be counting measure, and $M(G)=L^{1}(G, \mu)$. If G is not commutative, one must be a little more careful with the formulas. The outcome is that commutativity of G, of $M(G)$, and of $L^{1}(G)$, are all equivalent.

Solution to Part (1). We need to know that $\mu * \nu$ is defined, that is, that $s^{-1}(E)$ is in the product σ-algebra of two copies of the Borel subsets of \mathbb{R} when E is Borel. This is immediate from two facts: first, the product σ-algebra of two copies of the Borel subsets of \mathbb{R} is exactly the Borel subsets of \mathbb{R}^{2}, and if E is Borel then $s^{-1}(E)$ is Borel. The first fact was proved in the proof that Lebesgue measure on \mathbb{R}^{2} is the product of two copies of Lebesgue measure on \mathbb{R}. The second follows from continuity of s.

That $\mu * \nu$ is a complex measure is now immediate from the fact that inverse images preserve countable disjoint unions and \varnothing.

For the norm estimate, we first claim that $|\mu \times \nu|=|\mu| \times|\nu|$ To prove the claim, write $\mu=h \cdot|\mu|$ and $\mu=k \cdot \mid \nu$ for Borel functions $h, k: \mathbb{R} \rightarrow \mathbb{C}$ with $|h(x)|=1$ and $|k(x)|=1$ for all $x \in \mathbb{R}$. Then, using Fubini's Theorem at the first and third steps (the measurability criterion is immediate), if $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ is a bounded Borel function, then

$$
\begin{aligned}
\int_{\mathbb{R} \times \mathbb{R}} f d(\mu \times \nu) & =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x, y) d \mu(x)\right) d \nu(y) \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x, y) h(x) d|\mu|(x)\right) k(y) d|\nu|(y)=\int_{\mathbb{R} \times \mathbb{R}} f l d(|\mu| \times|\nu|) .
\end{aligned}
$$

In particular, if $E \subset \mathbb{R} \times \mathbb{R}$ is Borel, taking $f=\chi_{E}$ gives

$$
(\mu \times \nu)(E)=\int_{E} l d(|\mu| \times|\nu|)
$$

Since E is an arbitrary Borel set and $|l(x, y)|=1$ for all $x, y \in \mathbb{R}$, this implies the claim.

To prove the norm estimate, we need to show that if $\left(E_{n}\right)_{n \in \mathbb{Z}_{>0}}$ is a family of disjoint Borel sets such that $\mathbb{R}=\coprod_{n=1}^{\infty} E_{n}$, then $\sum_{n=1}^{\infty}\left|(\mu * \nu)\left(E_{n}\right)\right| \leq\|\mu\|\|\nu\|$. We
have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|(\mu * \nu)\left(E_{n}\right)\right| & =\sum_{n=1}^{\infty}\left|(\mu \times \nu)\left(s^{-1}\left(E_{n}\right)\right)\right| \leq \sum_{n=1}^{\infty}|\mu \times \nu|\left(s^{-1}\left(E_{n}\right)\right) \\
& =\sum_{n=1}^{\infty}(|\mu| \times|\nu|)\left(s^{-1}\left(E_{n}\right)\right)=(|\mu| \times|\nu|)\left(\mathbb{R}^{2}\right) \\
& =|\mu|(\mathbb{R}) \cdot|\nu|(\mathbb{R})=\|\mu\|\|\nu\| .
\end{aligned}
$$

This completes the proof.
Alternate proof of the norm estimate in Part (1). We need to show that if $\left(E_{n}\right)_{n \in \mathbb{Z}>0}$ is a family of disjoint Borel sets such that

$$
\begin{equation*}
\mathbb{R}=\coprod_{n=1}^{\infty} E_{n} \tag{1}
\end{equation*}
$$

then $\sum_{n=1}^{\infty}\left|(\mu * \nu)\left(E_{n}\right)\right| \leq\|\mu\|\|\nu\|$. We have, using the Monotone Convergence Theorem at the sixth step and (1) and countable additivity of $|\mu|$ at the seventh step,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|(\mu * \nu)\left(E_{n}\right)\right| & =\sum_{n=1}^{\infty}\left|(\mu \times \nu)\left(s^{-1}\left(E_{n}\right)\right)\right| \\
& =\sum_{n=1}^{\infty}\left|\int_{\mathbb{R}} \nu\left(\left\{y \in \mathbb{R}:(x, y) \in s^{-1}\left(E_{n}\right)\right\}\right) d \mu(x)\right| \\
& =\sum_{n=1}^{\infty}\left|\int_{\mathbb{R}} \nu\left(\left\{y \in \mathbb{R}: x+y \in E_{n}\right\}\right) d \mu(x)\right| \\
& \leq \sum_{n=1}^{\infty} \int_{\mathbb{R}}\left|\nu\left(\left\{y \in \mathbb{R}: x+y \in E_{n}\right\}\right)\right| d|\mu|(x) \\
& \leq \sum_{n=1}^{\infty} \int_{\mathbb{R}}|\nu|\left(\left\{y \in \mathbb{R}: x+y \in E_{n}\right\}\right) d|\mu|(x) \\
& =\int_{\mathbb{R}} \sum_{n=1}^{\infty}|\nu|\left(\left\{y \in \mathbb{R}: x+y \in E_{n}\right\}\right) d|\mu|(x) \\
& =\int_{\mathbb{R}}|\nu|(\mathbb{R}) d|\mu|(x)=|\mu|(\mathbb{R}) \cdot|\nu|(\mathbb{R})=\|\mu\|\|\nu\| .
\end{aligned}
$$

This completes the proof.
Solution to Part (2). The Riesz Representation Theorem for $C_{0}(\mathbb{R})$ implies the such a measure λ is unique.

We must therefore prove that λ satisfies the condition. For a Borel set $E \subset \mathbb{R}$, we have $\chi_{s^{-1}(E)}(x, y)=\chi_{E}(x+y)$. Therefore, using Fubini's Theorem at the last step,

$$
\begin{align*}
\int_{\mathbb{R}} \chi_{E} d(\mu * \nu) & =(\mu * \nu)(E)=(\mu \times \nu)\left(s^{-1}(E)\right) \tag{2}\\
& =\int_{\mathbb{R} \times \mathbb{R}} \chi_{s^{-1}(E)} d(\mu \times \nu)=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \chi_{E}(x+y) d \mu(x)\right) d \nu(y) .
\end{align*}
$$

Thus, the required formula holds for characteristic functions of Borel sets. Therefore it holds for Borel simple functions. Since every bounded Borel function is a uniform limit of Borel simple functions and the measures are finite, the formula holds for all bounded Borel functions, and in particular for all functions in $C_{0}(\mathbb{R})$.
Solution to Part (3). No solution has been written yet, but, using Fubini's Theorem multiple times, everything here is essentially immediate. (Commutativity uses the fact that the group \mathbb{R} is commutative. Associativity uses associativity of addition in \mathbb{R}.)

Solution to Part (4). This follows from (2) (as written: for the characteristic function of a Borel set E) together with the fact that

$$
\int_{\mathbb{R}} \chi_{E}(x+y) d \mu(x)=\mu(\{x-t: x \in E\})
$$

for every Borel set E.
Solution to Part (5). I didn't find a definition of μ-null in the edition of Rudin's book I am using. Here, however, are two equivalence characterizations (for any complex measure on (X, \mathcal{M}) :
(1) $E \in \mathcal{M}$ is μ-null if $|\mu|(E)=0$.
(2) $E \in \mathcal{M}$ is μ-null if whenever $F \subset E$ is in \mathcal{M}, then $\mu(F)=0$.

That (1) implies (2) follows from the fact that $|\mu|(E)$ is the supremum over all measurable partitions $E=\coprod_{n=1}^{\infty} E_{n}$ of $\sum_{n=1}^{\infty}\left|\mu\left(E_{n}\right)\right|$, by takinf $E_{1}=F$. The reverse implication is immediate from the same relation.

For the part about discrete measures, choose subsets $E, F \subset \mathbb{R}$ such that $\mathbb{R} \backslash E$ is μ-null and $\mathbb{R} \backslash F$ is ν-null. Set $S=E+F$, which is also countable. If $Y \subset \mathbb{R} \backslash S$, then $x \in Y$ and $y \in F$ imply $x-y \in \mathbb{R} \backslash E$. Thus, $x \in Y$ implies that $\{x-y: x \in$ $Y\} \subset \mathbb{R} \backslash F$. Therefore, by Part (4),

$$
(\mu * \nu)(Y)=\int_{\mathbb{R}} \mu(\{x-y: x \in Y\}) d \nu(y)=\int_{\mathbb{R}} 0 d \nu(y)=0
$$

For the part about continuous measures, let $z \in \mathbb{R}$. Then, by Part (4),
$(\mu * \nu)(\{z\})=\int_{\mathbb{R}} \mu(\{x-t: x \in\{z\}\}) d \nu(t)=\int_{\mathbb{R}} \mu(\{z-t\}) d \nu(t)=\int_{\mathbb{R}} 0 d \nu(t)=0$.
This completes the solution.
Solution to Part (6). Let $E \subset \mathbb{R}$ be a Borel set such that $m(E)=0$. By translation invariance of m, for all $y \in \mathbb{R}$, we also have $m(\{x-y: x \in E\})=0$, so that also $\mu(\{x-y: x \in E\})=0$. By Part (4),

$$
(\mu * \nu)(E)=\int_{\mathbb{R}} \mu(\{x-y: x \in E\}) d \nu(y)=\int_{\mathbb{R}} 0 d \nu(y)=0
$$

This completes the solution.
Solution to Part (7). It is easy to see that both the sets of discrete and continuous measues are vector subspaces of M; proofs are omitted. The algebraic statements involving products in both parts are immediate from Part (5).

We claim that that the set of discrete measures is closed. Let $\left(\mu_{n}\right)_{n \in \mathbb{Z}_{>0}}$ be a sequence of discrete measures which converges (in norm) to a measure μ. For $n \in \mathbb{Z}_{>0}$ choose a countable set $S_{n} \subset \mathbb{R}$ such that $\mathbb{R} \backslash S_{n}$ is μ_{n}-null. Set $S=\bigcup_{n=1}^{\infty} S_{n}$,
which is a countable set such that $\mathbb{R} \backslash S$ is μ_{n}-null for all $n \in \mathbb{Z}_{>0}$. Then for $E \subset \mathbb{R} \backslash S$, we have $\mu(E)=\lim _{n \rightarrow \infty} \mu_{n}(E)=\lim _{n \rightarrow \infty} 0=0$. Thus $\mathbb{R} \backslash S$ is μ-null, so μ is discrete. The claim is proved.

We claim that the set of continuous measures is closed. Let $\left(\mu_{n}\right)_{n \in \mathbb{Z}_{>0}}$ be a sequence of continuous measures which converges (in norm) to a measure μ. For every $x \in \mathbb{R}$, we have $\mu(\{x\})=\lim _{n \rightarrow \infty} \mu_{n}(\{x\})=\lim _{n \rightarrow \infty} 0=0$. So μ is continuous. The claim is proved.

Solution to Part (8) (sketch). It follows from Theorem 6.13 of Rudin's book that $f \mapsto f \cdot m$ is linear and isometric from $L^{1}(\mathbb{R})$ to M. Therefore its range is a closed subspace.

Preservation of convolution is a computation (which requires Fubini's Theorem); not yet written. Since we already showed that M is a commutative Banach algebra, this shows that $L^{1}(\mathbb{R})$ is isometrically isomorphic to a closed subalgebra of M, and is hence a commutative Banach algebra.

The ideal property follows from Part (6).
It is also easy to prove directly that $\{\mu \in M: \mu \ll m\}$ is closed in M.
Solution to Part (9). For $x \in M$ let δ_{x} be the "point mass measure at x ", that is, for a Borel set $E \subset \mathbb{R}$,

$$
\delta_{x}(E)= \begin{cases}1 & x \in E \\ 0 & x \notin E\end{cases}
$$

(The notation, and its generalizations, is fairly standard.) Then $\delta_{x} \in M$ for all $x \in \mathbb{R}$.

We claim that δ_{0} is an identity for M. By commutativity, it is enough to show that $\mu * \delta_{0}=\mu$ for every $\mu \in M$. Recall from Part (4) that is $\mu, \nu \in M, E \subset \mathbb{R}$ is a Borel set, and for $t \in \mathbb{R}$ we define $F_{t} \subset \mathbb{R}$ by $F_{t}=\{x-t: x \in E\}$, then

$$
(\mu * \nu)(E)=\int_{\mathbb{R}} \mu\left(F_{t}\right) d \nu(t)
$$

Putting $\nu=\delta_{0}$ and using $F_{0}=E$, we get $\left(\mu * \delta_{0}\right)(E)=\mu\left(F_{0}\right)=\mu(E)$.
We now show that $L^{1}(\mathbb{R})$ does not have an identity. The easiest way to do this is to consider the map $\varphi: L^{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ given by $\varphi(f)=\widehat{f}$ for $f \in L^{1}(\mathbb{R})$. This map is well defined by Theorem 9.6 of Rudin's book, it is a homomorphism by Theorem $9.2(\mathrm{c})$ of Rudin's book, and it is injective by Theorem 9.12 of Rudin's book. If $L^{1}(\mathbb{R})$ had an identity e, then $\varphi(e) \in C_{0}(\mathbb{R})$ would be a nonzero element satisfying $\varphi(e)^{2}=\varphi(e)$. Clearly no such nonzero element exists.
Alternate solution to Part (9). We first claim that if $f \in L^{1}(\mathbb{R})$ and $a, b \in \mathbb{R}$ satisfy $a<b$, then $f * \chi_{[a, b]}$ is continuous. To prove the claim, let $\varepsilon>0$, and choose $\delta_{0}>0$ so small that whenever $E \subset \mathbb{R}$ is measurable and $m(E)<\delta_{0}$, then $\int_{E}|f| d m<\varepsilon$. (That this can be done is a standard fact for $L^{1}(X, \mu)$ for any positive measure ν, and should have been done in Math 616.) Set $\delta=\frac{1}{2} \delta_{0}$.

For any $t \in \mathbb{R}$, we have

$$
\left(f * \chi_{[a, b]}\right)(t)=\int_{\mathbb{R}} f(s) \chi_{[a, b]}(t-s) d m(s)=\int_{t-b}^{t-a} f d m
$$

Therefore, if $t_{1}, t_{2} \in \mathbb{R}$ with $\left|t_{1}-t_{2}\right|<\delta$, the symmestric difference

$$
E=\left[t_{1}-b, t_{1}-a\right] \triangle\left[t_{2}-b, t_{2}-a\right]
$$

satisfies $m(E)<2 \delta=\delta_{0}$, so

$$
\left|\left(f * \chi_{[a, b]}\right)\left(t_{1}\right)-\left(f * \chi_{[a, b]}\right)\left(t_{2}\right)\right|=\left|\int_{E} f d m\right| \leq \int_{E}|f| d m<\varepsilon
$$

This proves the claim.
If now $f \in L^{1}(\mathbb{R})$ is an identity for $L^{1}(\mathbb{R})$, then $f * \chi_{[-1,1]}=\chi_{[-1,1]}$ almost everywhere. The function $f * \chi_{[-1,1]}$ is continuous. But there is no continuous function g such that $g=\chi_{[-1,1]}$, since, if there were, the indefinite integral F of $\chi_{[-1,1]}$ would be differentiable everywhere, which is not the case.

[^0]: Date: 21 February 2024.

