MATH 617 (WINTER 2024, PHILLIPS): SOLUTIONS TO HOMEWORK 6

Essentially no proofreading has been done, and there are slight gaps.

Problem 1 (Problem 5 in Chapter 7 of Rudin). This problem counts as five regular problems.

Let M be the Banach space of all complex Borel measures on \mathbb{R} . Recall that $\|\mu\| = |\mu|(\mathbb{R})$ for $\mu \in M$.

Let $s: \mathbb{R}^2 \to \mathbb{R}$ be the function s(x, y) = x + y for $x, y \in \mathbb{R}$. For $\mu, \nu \in M$, define $\mu * \nu$ to be the set function given by $(\mu * \nu)(E) = (\mu \times \nu)(s^{-1}(E))$ for every Borel set $E \subset \mathbb{R}$. (The function $\mu * \nu$ is called the *convoluton* of μ and ν .)

- (1) Let $\mu, \nu \in M$. Prove that $\mu * \nu$ is a complex Borel measure on \mathbb{R} which satisfies $\|\mu * \nu\| \leq \|\mu\| \|\nu\|$.
- (2) Let $\mu, \nu \in M$. Prove that $\mu * \nu$ is the unique measure $\lambda \in M$ which satisfies

$$\int_{\mathbb{R}} f \, d\lambda = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x+y) \, d\mu(x) \right) \, d\nu(y)$$

for all $f \in C_0(\mathbb{R})$.

- (3) Prove that the operation $(\mu, \nu) \mapsto \mu * \nu$, from $M \times M$ to M, is commutative, associative, distributes over addition, and satisfies $\alpha(\mu * \nu) = \alpha \mu * \nu = \mu * \alpha \nu$ for all $\alpha \in \mathbb{C}$. (Thus, M, with multiplication defined by $\mu \cdot \nu = \mu * \nu$, is a commutative algebra over \mathbb{C} . Since we already know that M is a Banach space, the inequality in (1) now means that M is in fact a complex Banach algebra.)
- (4) Let $\mu, \nu \in M$. Prove that for every Borel set $E \subset \mathbb{R}$,

$$(\mu * \nu)(E) = \int_{\mathbb{R}} \mu(\{x - t \colon x \in E\}) d\nu(t).$$

- (5) Say that $\mu \in M$ is discrete if there is a countable set $S \subset \mathbb{R}$ such that $\mathbb{R} \setminus S$ is μ -null, and say that $\mu \in M$ is continuous if $\mu(\{x\}) = 0$ for every $x \in \mathbb{R}$. Prove that if $\mu, \nu \in M$ are both discrete, then $\mu * \nu$ is discrete. Prove that if $\mu, \nu \in M$ and μ is continuous, then $\mu * \nu$ is continuous.
- (6) As usual, let m be Lebesgue measure on \mathbb{R} . (Note that $m \notin M$.) Prove that if $\mu, \nu \in M$ and $\mu \ll m$, then $\mu * \nu \ll m$.
- (7) Prove that the discrete measures form a closed subalgebra of M and that the continuous measures form a closed ideal in M.
- (8) Recall that if λ is a (nonnegative) measure on (X, \mathcal{M}) and $f: X \to \mathbb{C}$ is integrable or nonnegative, then $f \cdot \lambda$ is the (complex or nonnegative) measure on X defined by $(f \cdot \lambda)(E) = \int_E f d\lambda$. Prove that $f \mapsto f \cdot m$ defines an isometric linear map which preserves the multiplication given by convolution from $L^1(\mathbb{R})$ to $\{\mu \in M : \mu \ll m\}$. Use this fact to prove that the operation $(f,g) \mapsto f * g$ makes $L^1(\mathbb{R})$ a commutative Banach algebra. Also prove that $\{\mu \in M : \mu \ll m\}$ is a closed ideal in M.

Date: 21 February 2024.

(9) Prove that the algebra M is unital, but that $L^1(\mathbb{R})$ is not unital.

You may use without proof the obvious analog of Fubini's Theorem for complex measures. It is proved by writing each complex measure as a linear combination of four nonnegative measures, but the product then has 16 terms. Alternatively

Hint for Part (9). The easiest way to show that $L^1(\mathbb{R})$ is not unital is to see what would happen to an identity element under the Fourier transform map $f \mapsto \hat{f}$. Feel free to use that, even if we haven't yet discussed Fourier transforms.

A more useful method, because it generalizes better, to to prove (using the definitions in a previous homework problem) a sufficient special case of the fact that if $f \in L^1(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$, then f * g is continuous.

Almost all of this works for any locally compact Hausdorff group G in place of \mathbb{R} , and with a (left) Haar measure μ in place of m. The algebra is then called M(G), the measure algebra of G. The algebra $L^1(G)$ is unital if and only if G has the discrete topology; in this case, the Haar measure can be taken to be counting measure, and $M(G) = L^1(G, \mu)$. If G is not commutative, one must be a little more careful with the formulas. The outcome is that commutativity of G, of M(G), and of $L^1(G)$, are all equivalent.

Solution to Part (1). We need to know that $\mu * \nu$ is defined, that is, that $s^{-1}(E)$ is in the product σ -algebra of two copies of the Borel subsets of \mathbb{R} when E is Borel. This is immediate from two facts: first, the product σ -algebra of two copies of the Borel subsets of \mathbb{R} is exactly the Borel subsets of \mathbb{R}^2 , and if E is Borel then $s^{-1}(E)$ is Borel. The first fact was proved in the proof that Lebesgue measure on \mathbb{R}^2 is the product of two copies of Lebesgue measure on \mathbb{R} . The second follows from continuity of s.

That $\mu * \nu$ is a complex measure is now immediate from the fact that inverse images preserve countable disjoint unions and \emptyset .

For the norm estimate, we first claim that $|\mu \times \nu| = |\mu| \times |\nu|$ To prove the claim, write $\mu = h \cdot |\mu|$ and $\mu = k \cdot |\nu|$ for Borel functions $h, k \colon \mathbb{R} \to \mathbb{C}$ with |h(x)| = 1and |k(x)| = 1 for all $x \in \mathbb{R}$. Then, using Fubini's Theorem at the first and third steps (the measurability criterion is immediate), if $f \colon \mathbb{R}^2 \to \mathbb{C}$ is a bounded Borel function, then

$$\int_{\mathbb{R}\times\mathbb{R}} f \, d(\mu \times \nu) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) \, d\mu(x) \right) \, d\nu(y)$$
$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) h(x) \, d|\mu|(x) \right) k(y) \, d|\nu|(y) = \int_{\mathbb{R}\times\mathbb{R}} fl \, d(|\mu| \times |\nu|).$$

In particular, if $E \subset \mathbb{R} \times \mathbb{R}$ is Borel, taking $f = \chi_E$ gives

$$(\mu \times \nu)(E) = \int_E l \, d(|\mu| \times |\nu|)$$

Since E is an arbitrary Borel set and |l(x, y)| = 1 for all $x, y \in \mathbb{R}$, this implies the claim.

To prove the norm estimate, we need to show that if $(E_n)_{n \in \mathbb{Z}_{>0}}$ is a family of disjoint Borel sets such that $\mathbb{R} = \coprod_{n=1}^{\infty} E_n$, then $\sum_{n=1}^{\infty} |(\mu * \nu)(E_n)| \leq ||\mu|| ||\nu||$. We

have

$$\sum_{n=1}^{\infty} |(\mu * \nu)(E_n)| = \sum_{n=1}^{\infty} |(\mu \times \nu)(s^{-1}(E_n))| \le \sum_{n=1}^{\infty} |\mu \times \nu|(s^{-1}(E_n))|$$
$$= \sum_{n=1}^{\infty} (|\mu| \times |\nu|)(s^{-1}(E_n)) = (|\mu| \times |\nu|)(\mathbb{R}^2)$$
$$= |\mu|(\mathbb{R}) \cdot |\nu|(\mathbb{R}) = ||\mu|||\nu||.$$

This completes the proof.

Alternate proof of the norm estimate in Part (1). We need to show that if $(E_n)_{n \in \mathbb{Z}_{>0}}$ is a family of disjoint Borel sets such that

(1)
$$\mathbb{R} = \prod_{n=1}^{\infty} E_n,$$

then $\sum_{n=1}^{\infty} |(\mu * \nu)(E_n)| \leq ||\mu|| ||\nu||$. We have, using the Monotone Convergence Theorem at the sixth step and (1) and countable additivity of $|\mu|$ at the seventh step,

$$\begin{split} \sum_{n=1}^{\infty} |(\mu * \nu)(E_n)| &= \sum_{n=1}^{\infty} |(\mu \times \nu)(s^{-1}(E_n))| \\ &= \sum_{n=1}^{\infty} \left| \int_{\mathbb{R}} \nu\left(\left\{ y \in \mathbb{R} \colon (x,y) \in s^{-1}(E_n) \right\} \right) d\mu(x) \right| \\ &= \sum_{n=1}^{\infty} \left| \int_{\mathbb{R}} \nu\left(\left\{ y \in \mathbb{R} \colon x + y \in E_n \right\} \right) d\mu(x) \right| \\ &\leq \sum_{n=1}^{\infty} \int_{\mathbb{R}} |\nu| \left(\left\{ y \in \mathbb{R} \colon x + y \in E_n \right\} \right) d|\mu|(x) \\ &\leq \sum_{n=1}^{\infty} \int_{\mathbb{R}} |\nu| \left(\left\{ y \in \mathbb{R} \colon x + y \in E_n \right\} \right) d|\mu|(x) \\ &= \int_{\mathbb{R}} \sum_{n=1}^{\infty} |\nu| \left(\left\{ y \in \mathbb{R} \colon x + y \in E_n \right\} \right) d|\mu|(x) \\ &= \int_{\mathbb{R}} |\nu|(\mathbb{R}) d|\mu|(x) = |\mu|(\mathbb{R}) \cdot |\nu|(\mathbb{R}) = \|\mu\| \|\nu\|. \end{split}$$

This completes the proof.

Solution to Part (2). The Riesz Representation Theorem for $C_0(\mathbb{R})$ implies the such a measure λ is unique.

We must therefore prove that λ satisfies the condition. For a Borel set $E \subset \mathbb{R}$, we have $\chi_{s^{-1}(E)}(x,y) = \chi_E(x+y)$. Therefore, using Fubini's Theorem at the last step,

(2)
$$\int_{\mathbb{R}} \chi_E d(\mu * \nu) = (\mu * \nu)(E) = (\mu \times \nu)(s^{-1}(E))$$
$$= \int_{\mathbb{R} \times \mathbb{R}} \chi_{s^{-1}(E)} d(\mu \times \nu) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \chi_E(x+y) d\mu(x) \right) d\nu(y).$$

Thus, the required formula holds for characteristic functions of Borel sets. Therefore it holds for Borel simple functions. Since every bounded Borel function is a uniform limit of Borel simple functions and the measures are finite, the formula holds for all bounded Borel functions, and in particular for all functions in $C_0(\mathbb{R})$.

Solution to Part (3). No solution has been written yet, but, using Fubini's Theorem multiple times, everything here is essentially immediate. (Commutativity uses the fact that the group \mathbb{R} is commutative. Associativity uses associativity of addition in \mathbb{R} .)

Solution to Part (4). This follows from (2) (as written: for the characteristic function of a Borel set E) together with the fact that

$$\int_{\mathbb{R}} \chi_E(x+y) \, d\mu(x) = \mu\big(\big\{x-t \colon x \in E\big\}\big)$$

for every Borel set E.

Solution to Part (5). I didn't find a definition of μ -null in the edition of Rudin's book I am using. Here, however, are two equivalence characterizations (for any complex measure on (X, \mathcal{M}) :

- (1) $E \in \mathcal{M}$ is μ -null if $|\mu|(E) = 0$.
- (2) $E \in \mathcal{M}$ is μ -null if whenever $F \subset E$ is in \mathcal{M} , then $\mu(F) = 0$.

That (1) implies (2) follows from the fact that $|\mu|(E)$ is the supremum over all measurable partitions $E = \prod_{n=1}^{\infty} E_n$ of $\sum_{n=1}^{\infty} |\mu(E_n)|$, by takinf $E_1 = F$. The reverse implication is immediate from the same relation.

For the part about discrete measures, choose subsets $E, F \subset \mathbb{R}$ such that $\mathbb{R} \setminus E$ is μ -null and $\mathbb{R} \setminus F$ is ν -null. Set S = E + F, which is also countable. If $Y \subset \mathbb{R} \setminus S$, then $x \in Y$ and $y \in F$ imply $x - y \in \mathbb{R} \setminus E$. Thus, $x \in Y$ implies that $\{x - y : x \in Y\} \subset \mathbb{R} \setminus F$. Therefore, by Part (4),

$$(\mu * \nu)(Y) = \int_{\mathbb{R}} \mu\bigl(\bigl\{x - y \colon x \in Y\bigr\}\bigr) \, d\nu(y) = \int_{\mathbb{R}} 0 \, d\nu(y) = 0$$

For the part about continuous measures, let $z \in \mathbb{R}$. Then, by Part (4),

$$(\mu * \nu)(\{z\}) = \int_{\mathbb{R}} \mu(\{x - t \colon x \in \{z\}\}) d\nu(t) = \int_{\mathbb{R}} \mu(\{z - t\}) d\nu(t) = \int_{\mathbb{R}} 0 d\nu(t) = 0.$$

This completes the solution

This completes the solution.

Solution to Part (6). Let $E \subset \mathbb{R}$ be a Borel set such that m(E) = 0. By translation invariance of m, for all $y \in \mathbb{R}$, we also have $m(\{x - y : x \in E\}) = 0$, so that also $\mu(\{x - y : x \in E\}) = 0$. By Part (4),

$$(\mu * \nu)(E) = \int_{\mathbb{R}} \mu(\{x - y \colon x \in E\}) \, d\nu(y) = \int_{\mathbb{R}} 0 \, d\nu(y) = 0.$$

This completes the solution.

Solution to Part (7). It is easy to see that both the sets of discrete and continuous measures are vector subspaces of M; proofs are omitted. The algebraic statements involving products in both parts are immediate from Part (5).

We claim that the set of discrete measures is closed. Let $(\mu_n)_{n \in \mathbb{Z}_{>0}}$ be a sequence of discrete measures which converges (in norm) to a measure μ . For $n \in \mathbb{Z}_{>0}$ choose a countable set $S_n \subset \mathbb{R}$ such that $\mathbb{R} \setminus S_n$ is μ_n -null. Set $S = \bigcup_{n=1}^{\infty} S_n$,

4

which is a countable set such that $\mathbb{R} \setminus S$ is μ_n -null for all $n \in \mathbb{Z}_{>0}$. Then for $E \subset \mathbb{R} \setminus S$, we have $\mu(E) = \lim_{n \to \infty} \mu_n(E) = \lim_{n \to \infty} 0 = 0$. Thus $\mathbb{R} \setminus S$ is μ -null, so μ is discrete. The claim is proved.

We claim that the set of continuous measures is closed. Let $(\mu_n)_{n \in \mathbb{Z}_{>0}}$ be a sequence of continuous measures which converges (in norm) to a measure μ . For every $x \in \mathbb{R}$, we have $\mu(\{x\}) = \lim_{n \to \infty} \mu_n(\{x\}) = \lim_{n \to \infty} 0 = 0$. So μ is continuous. The claim is proved.

Solution to Part (8) (sketch). It follows from Theorem 6.13 of Rudin's book that $f \mapsto f \cdot m$ is linear and isometric from $L^1(\mathbb{R})$ to M. Therefore its range is a closed subspace.

Preservation of convolution is a computation (which requires Fubini's Theorem); not yet written. Since we already showed that M is a commutative Banach algebra, this shows that $L^1(\mathbb{R})$ is isometrically isomorphic to a closed subalgebra of M, and is hence a commutative Banach algebra.

The ideal property follows from Part (6).

It is also easy to prove directly that $\{\mu \in M : \mu \ll m\}$ is closed in M.

Solution to Part (9). For $x \in M$ let δ_x be the "point mass measure at x", that is, for a Borel set $E \subset \mathbb{R}$,

$$\delta_x(E) = \begin{cases} 1 & x \in E \\ 0 & x \notin E. \end{cases}$$

(The notation, and its generalizations, is fairly standard.) Then $\delta_x \in M$ for all $x \in \mathbb{R}$.

We claim that δ_0 is an identity for M. By commutativity, it is enough to show that $\mu * \delta_0 = \mu$ for every $\mu \in M$. Recall from Part (4) that is $\mu, \nu \in M, E \subset \mathbb{R}$ is a Borel set, and for $t \in \mathbb{R}$ we define $F_t \subset \mathbb{R}$ by $F_t = \{x - t : x \in E\}$, then

$$(\mu * \nu)(E) = \int_{\mathbb{R}} \mu(F_t) \, d\nu(t).$$

Putting $\nu = \delta_0$ and using $F_0 = E$, we get $(\mu * \delta_0)(E) = \mu(F_0) = \mu(E)$.

We now show that $L^1(\mathbb{R})$ does not have an identity. The easiest way to do this is to consider the map $\varphi \colon L^1(\mathbb{R}) \to C_0(\mathbb{R})$ given by $\varphi(f) = \hat{f}$ for $f \in L^1(\mathbb{R})$. This map is well defined by Theorem 9.6 of Rudin's book, it is a homomorphism by Theorem 9.2(c) of Rudin's book, and it is injective by Theorem 9.12 of Rudin's book. If $L^1(\mathbb{R})$ had an identity e, then $\varphi(e) \in C_0(\mathbb{R})$ would be a nonzero element satisfying $\varphi(e)^2 = \varphi(e)$. Clearly no such nonzero element exists.

Alternate solution to Part (9). We first claim that if $f \in L^1(\mathbb{R})$ and $a, b \in \mathbb{R}$ satisfy a < b, then $f * \chi_{[a,b]}$ is continuous. To prove the claim, let $\varepsilon > 0$, and choose $\delta_0 > 0$ so small that whenever $E \subset \mathbb{R}$ is measurable and $m(E) < \delta_0$, then $\int_E |f| \, dm < \varepsilon$. (That this can be done is a standard fact for $L^1(X,\mu)$ for any positive measure ν , and should have been done in Math 616.) Set $\delta = \frac{1}{2}\delta_0$.

For any $t \in \mathbb{R}$, we have

$$(f * \chi_{[a,b]})(t) = \int_{\mathbb{R}} f(s)\chi_{[a,b]}(t-s) \, dm(s) = \int_{t-b}^{t-a} f \, dm.$$

Therefore, if $t_1, t_2 \in \mathbb{R}$ with $|t_1 - t_2| < \delta$, the symmetric difference

$$E = [t_1 - b, t_1 - a] \triangle [t_2 - b, t_2 - a]$$

satisfies $m(E) < 2\delta = \delta_0$, so

$$\left| (f * \chi_{[a,b]})(t_1) - (f * \chi_{[a,b]})(t_2) \right| = \left| \int_E f \, dm \right| \le \int_E |f| \, dm < \varepsilon.$$

This proves the claim.

If now $f \in L^1(\mathbb{R})$ is an identity for $L^1(\mathbb{R})$, then $f * \chi_{[-1,1]} = \chi_{[-1,1]}$ almost everywhere. The function $f * \chi_{[-1,1]}$ is continuous. But there is no continuous function g such that $g = \chi_{[-1,1]}$, since, if there were, the indefinite integral F of $\chi_{[-1,1]}$ would be differentiable everywhere, which is not the case.