MATH 617 (WINTER 2024, PHILLIPS): SOLUTIONS TO HOMEWORK 7

Conventions on measures: m is ordinary Lebesgue measure, $\bar{m}=(2 \pi)^{-1 / 2} m$, and in expressions of the form $\int_{\mathbb{R}} f(x) d x$, ordinary Lebesgue measure is assumed.

Little proofreading has been done.
Some parts of problems have several different solutions (as many as four).
Problem 1 (Rudin, Chapter 9, Problem 1). Let $f \in L^{1}(\mathbb{R}, \bar{m})$, and suppose that $f \neq 0$ and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Prove that $|\widehat{f}(y)|<\widehat{f}(0)$ for all $y \in \mathbb{R} \backslash\{0\}$.

The problem in Rudin is not clearly stated. It is likely to be interpreted as assuming the stronger hypothesis $f(x)>0$ for all $x \in \mathbb{R}$. The stronger assumption doesn't help with the proof.

Solution. We have

$$
\widehat{f}(y)=\int_{\mathbb{R}} e^{-i y x} f(x) d \bar{m}(x)
$$

for $y \in \mathbb{R}$. When $y=0$, the integrand is $f(x) \geq 0$, so $\widehat{f}(0) \geq 0$, and the desired inequality at least makes sense. Moreover, for all $y \in \mathbb{R}$, we have

$$
|\widehat{f}(y)| \leq \int_{\mathbb{R}}\left|e^{-i y x} f(x)\right| d \bar{m}(x)=\int_{\mathbb{R}} f(x) d \bar{m}(x)=\widehat{f}(0)
$$

We need therefore only prove that the inequality is strict when $y \neq 0$.
Let $y \in \mathbb{R} \backslash\{0\}$. Choose $\theta \in \mathbb{R}$ such that $e^{i \theta} \widehat{f}(y)=|\widehat{f}(y)|$. Then

$$
e^{i \theta} \widehat{f}(y)=\operatorname{Re}\left(e^{i \theta} \widehat{f}(y)\right)=\int_{\mathbb{R}} \operatorname{Re}\left(e^{i(\theta-y x)}\right) f(x) d \bar{m}(x)=\int_{\mathbb{R}} \cos (\theta-y x) f(x) d \bar{m}(x)
$$

Therefore

$$
\widehat{f}(0)-|\widehat{f}(y)|=\int_{\mathbb{R}}[1-\cos (\theta-y x)] f(x) d \bar{m}(x)
$$

Set

$$
E=\{x \in \mathbb{R}: f(x)>0\} \quad \text { and } \quad S=\left\{\frac{2 \pi n+\theta}{y}: n \in \mathbb{Z}\right\}
$$

Then $\bar{m}(E)>0$ and S is countable, so $\bar{m}(E \cap(\mathbb{R} \backslash S))>0$. We have $1-\cos (\theta-y x)>$ 0 for all $x \in \mathbb{R} \backslash S$, so

$$
[1-\cos (\theta-y x)] f(x)>0
$$

for all $x \in E \cap(\mathbb{R} \backslash S)$. Since also $[1-\cos (\theta-y x)] f(x) \geq 0$ for all $x \in \mathbb{R}$, Theorem 1.39(a) of Rudin now implies that

$$
\int_{\mathbb{R}}[1-\cos (\theta-y x)] f(x) d \bar{m}(x)>0
$$

So $\widehat{f}(0)-|\widehat{f}(y)|>0$.

[^0]Alternate solution. We prove $|\widehat{f}(y)| \leq \widehat{f}(0)$ as in the first solution.
Now assume that $y \in \mathbb{R} \backslash\{0\}$ and $|\widehat{f}(y)|=\widehat{f}(0)$. Define $g(x)=e^{-i y x} f(x)$ for $x \in \mathbb{R}$. Then for all $x \in \mathbb{R}$, we have $|g(x)|=f(x)$, so

$$
\int_{\mathbb{R}}|g| d \bar{m}=\int_{\mathbb{R}} f d \bar{m}=\widehat{f}(0)=|\widehat{f}(y)|=\left|\int_{\mathbb{R}} g d \bar{m}\right| .
$$

Theorem 1.39(c) of Rudin's book gives a constant α such that $\alpha e^{-i y x} f(x)=f(x)$ for almost all $x \in \mathbb{R}$. Since $y \neq 0$, the set $E=\left\{x \in \mathbb{R}: \alpha e^{-i y x}=1\right\}$ is (at most) countable. So $\bar{m}(E)=0$. The function f vanishes off E, so f is the zero element of $L^{1}(\mathbb{R}, \bar{m})$.

I have restated the next problem in labelled parts for convenience. It counts as three ordinary problems.
Problem 2 (Rudin, Chapter 9, Problem 2).
(1) Compute the Fourier transform of the characteristic function of an interval.
(2) For $n \in \mathbb{Z}_{>0}$ let g_{n} be the characteristic function of $[-n, n]$, and let h be the characteristic function of $[-1,1]$. Compute $g_{n} * h$ explicitly. (It is piecewise linear.)
(3) For $x \in \mathbb{R} \backslash\{0\}$ and $n \in \mathbb{Z}_{>0}$, set

$$
f_{n}(x)=\frac{\sin (x) \sin (n x)}{x^{2}} .
$$

Prove that there is a constant c such that $g_{n} * h$ is the Fourier transform of $c f_{n}$.
(4) Let f_{n} be as in part (3). Prove that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1}=\infty$.
(5) Conclude that $\left\{\widehat{f}: f \in L^{1}(\mathbb{R})\right\}$ is a proper subset of $C_{0}(\mathbb{R})$.
(6) Prove that $\left\{\widehat{f:}: f \in L^{1}(\mathbb{R})\right\}$ is dense $C_{0}(\mathbb{R})$.

Solution to part (1). This is just a computation. (Reminder: we are using $\bar{m}=$ $\left(\frac{1}{\sqrt{2 \pi}}\right) m$ in the definition of convolution as well as in the definition of the Fourier transform.) The result is

$$
\widehat{\chi_{[a, b]}}(t)= \begin{cases}\frac{i}{\sqrt{2 \pi \cdot t}}\left(e^{-i b t}-e^{-i a t}\right) & t \neq 0 \\ \left(\frac{1}{\sqrt{2 \pi}}\right)(b-a) & t=0 .\end{cases}
$$

Of course, $\widehat{\chi_{[a, b)}}, \widehat{\chi_{(a, b]}}$, and $\widehat{\chi_{(a, b)}}$ are the same.
Solution to (2). This is also a computation.
Set $p_{n}(x)=m([x-n, x+n] \cap[-1,1])$, which is given by the formula

$$
p_{n}(x)= \begin{cases}0 & x \leq-n-1 \\ x+n+1 & -n-1 \leq x \leq-n+1 \\ 2 & -n+1 \leq x \leq n-1 \\ -x+n+1 & n-1 \leq x \leq n+1 \\ 0 & n+1 \leq x\end{cases}
$$

(For $x \in[-n-1, n+1]$, but not for x not in this interval, the formula can be written as $\min (1, x+n)-\max (-1, x-n)$.)

The outcome of the computation is $\left(g_{n} * h\right)=\frac{1}{\sqrt{2 \pi}} p_{n}(x)$.
Here are graphs for $n=1$ and for $n=3$:

(These are not required as part of the solution.)
Solution to part (3). For $t \neq 0$, Theorem 9.2(c) of Rudin gives the first step in the following calculation, and part (a) of this problem gives the second step:

$$
\left(\widehat{g_{n} * h}\right)(t)=\widehat{g_{n}}(t) \widehat{h}(t)=\left(\frac{i}{\sqrt{2 \pi} \cdot t}\left(e^{-i n t}-e^{i n t}\right)\right)\left(\frac{i}{\sqrt{2 \pi} \cdot t}\left(e^{-i t}-e^{i t}\right)\right)
$$

Using the identity $\sin (\theta)=\left(e^{i \theta}-e^{-i \theta}\right) /(2 i)$, one can rewrite the last expression as $\frac{2}{\pi} f_{n}(t)$.

Unfortunately, this isn't quite what we want. We will get what we do want using the Fourier inversion theorem and a bit of trickery.

Clearly $g_{n}, h \in L^{1}(\mathbb{R})$, so $g_{n} * h \in L^{1}(\mathbb{R})$.
We next show that $f_{n} \in L^{1}(\mathbb{R})$. Define

$$
b_{n}(x)= \begin{cases}x^{-2} & |x| \geq \frac{1}{\sqrt{n}} \\ n & |x|<\frac{1}{\sqrt{n}}\end{cases}
$$

It is clear that $\left|f_{n}(x)\right| \leq x^{-2}$ for all $x \neq 0$. Also, writing

$$
f_{n}(x)=n\left(\frac{\sin (x)}{x}\right)\left(\frac{\sin (n x)}{n x}\right)
$$

and using $|\sin (y)| \leq|y|$ for all $y \in \mathbb{R}$, we get $\left|f_{n}(x)\right| \leq n$ for all $x \neq 0$. We may as well take $f_{n}(0)=n$. (This makes f_{n} continuous at 0 .) Then the inequalities above hold for all x, and imply that $\left|f_{n}(x)\right| \leq b_{n}(x)$ for all x. Clearly $b_{n} \in L^{1}(\mathbb{R})$, so $f_{n} \in L^{1}(\mathbb{R})$.

The Fourier Inversion Theorem therefore gives the first step in the following calculation. At the second step, we use the fact that f_{n} is an even function, and at the third step we change variables, replacing t with $-t$. We get:

$$
\begin{aligned}
\left(g_{n} * h\right)(x) & =\left(\frac{2}{\pi}\right)\left(\frac{1}{\sqrt{2 \pi}}\right) \int_{-\infty}^{\infty} e^{i t x} f_{n}(t) d t \\
& =\left(\frac{2}{\pi}\right)\left(\frac{1}{\sqrt{2 \pi}}\right) \int_{-\infty}^{\infty} e^{i t x} f_{n}(-t) d t \\
& =\left(\frac{2}{\pi}\right)\left(\frac{1}{\sqrt{2 \pi}}\right) \int_{-\infty}^{\infty} e^{-i t x} f_{n}(t) d t=\left(\frac{2}{\pi}\right) \widehat{f_{n}}(x)
\end{aligned}
$$

This is what is wanted.
Alternate solution to part (3) (sketch). Directly compute

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t x}\left(g_{n} * h\right)(t) d t
$$

One will have to compute three different integrals, corresponding to three different formulas for $\left(g_{n} * h\right)(t)$ on parts of its domain where it is nonzero. The most complicated term has the form $\int_{r}^{s} t e^{i t x} d t$, which can be done by integration by parts. Details are omitted. The result is $\frac{2}{\pi} f_{n}$.

One checks that $f_{n} \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$, as in first solution. Using Theorem 9.13 of Rudin, it follows that $\frac{2}{\pi} \widehat{f_{n}}=g_{n} * h$.

Second alternate solution to part (3) (sketch). (This solution is not recommended.) Imitate the arguments in Chapter 9 of Rudin, but exchanging $\exp (i t x)$ and $\exp (-i t x)$ everywhere. Going as far as the Fourier inversion theorem, one gets the result that if $f \in L^{1}(\mathbb{R})$ and the function

$$
f^{\vee}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t x} f(x) d x
$$

is also in $L^{1}(\mathbb{R})$, then for almost all x we have

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t x} f^{\vee}(x) d t
$$

Either use the analog of Theorem $9.2(\mathrm{c})$ of Rudin, or directly compute, to get $\left(g_{n} * h\right)^{\vee}=\frac{2}{\pi} f_{n}$, and apply the formula above to deduce that $\frac{2}{\pi} \widehat{f_{n}}=g_{n} * h$.
Third alternate solution to part (3) (sketch). Use the same method as in the second alternate solution. However, instead of repeating all the work in Chapter 9 of Rudin, deduce the results needed from the ones already there. For the Fourier inversion theorem, this is done as follows. For $f \in L^{1}(\mathbb{R})$, define $R(f)(x)=f(-x)$. Then f^{\vee} is by definition $R(\widehat{f})$, so $R\left(f^{\vee}\right)=\widehat{f}$. Since $f \in L^{1}(\mathbb{R})$ if and only if $R(f) \in L^{1}(\mathbb{R})$, we see that if f and f^{\vee} are both in $L^{1}(R)$, then for almost every x we have, changing the variable from t to $-t$ at the first step,
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i t x} f^{\vee}(t) d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t x} R\left(f^{\vee}\right)(t) d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t x} \widehat{f}(t) d t=f(t)$.
The formula for $\left(g_{n} * h\right)^{\vee}$ can be obtained in a similar way.
Solution to part (4). Since $\lim _{x \rightarrow 0} x^{-1} \sin (x)=0$, there exists $r>0$ such that $x^{-1} \sin (x)>\frac{1}{2}$ whenever $|x| \leq r$.

Let $k \in \mathbb{Z}_{>0}$ satisfy $k \pi / n \leq r$. Then for $x \in[(k-1) \pi / n, k \pi / n]$ we have

$$
\left|f_{n}(x)\right| \geq\left(\frac{1}{2}\right)\left(\frac{|\sin (n x)|}{k \pi / n}\right)=\frac{n|\sin (n x)|}{2 k \pi}
$$

whence

$$
\int_{(k-1) \pi / n}^{k \pi / n}\left|f_{n}(x)\right| d x \geq \frac{n}{2 k \pi} \int_{(k-1) \pi / n}^{k \pi / n}|\sin (n x)| d x=\frac{1}{k \pi}
$$

Accordingly,

$$
\left\|f_{n}\right\|_{1} \geq \frac{1}{\pi} \sum_{1 \leq k \leq n r / \pi} \frac{1}{k}
$$

Since $r>0$,

$$
\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1} \geq \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{k}=\infty
$$

as desired.

Solution to part (5). Let $F: L^{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ be the Fourier transform. Then F is linear, bounded, and injective. If it were surjective, the Open Mapping Theorem would imply that its inverse F^{-1} would also be bounded. But we have seen that $\left\|g_{n} * h\right\|_{\infty}=\sqrt{2 / \pi}$ for all n, while $\lim _{n \rightarrow \infty}\left\|F^{-1}\left(g_{n} * h\right)\right\|_{1}=\infty$. So F^{-1} can't be bounded, and F is not surjective.

Solution to part (6). We already know that $C_{\mathrm{c}}(\mathbb{R})$ is dense in $C_{0}(\mathbb{R})$.
Next, let E_{n} be the set of all continuous functions l on \mathbb{R} with compact support such that l is linear on every interval $[r / n,(r+1) / n]$ with $r \in \mathbb{Z}$. Such a function is clearly determined by its values $l(r / n)$ for $r \in \mathbb{Z}$. Indeed, if we define

$$
l_{0}(x)= \begin{cases}0 & x \leq-1 \\ x+1 & -1 \leq x \leq 0 \\ -x+1 & 0 \leq x \leq 1 \\ 0 & n+1 \leq x\end{cases}
$$

then

$$
l(x)=\sum_{r \in \mathbb{Z}} l(r / n) l_{0}(n x-r) .
$$

Note that $l(r / n) \neq 0$ for only finitely many $r \in \mathbb{Z}$.
Using uniform continuity (details omitted), one checks that $\bigcup_{n \in \mathbb{Z}}^{>0}$ E_{n} is dense in $C_{\mathrm{c}}(\mathbb{R})$. Also, we saw above that $g_{1} * h$ is in the range of the Fourier transform. Using the formula for it derived above, and Theorems 9.2(a) and 9.2(e) of Rudin, one sees that the functions $x \mapsto l_{0}(n x-r)$ are all in the range of the Fourier transform. It follows that $\bigcup_{n \in \mathbb{Z}_{>0}} E_{n}$ is in the range of the Fourier transform. Therefore the range of the Fourier transform is dense $C_{0}(\mathbb{R})$.

Alternate solution to part (6). Set $A=\left\{\widehat{f}: f \in L^{1}(\mathbb{R})\right\}$. Then A is a vector subspace of $C_{0}(\mathbb{R})$. It is closed under complex conjugation, by Theorem $9.2(\mathrm{~d})$ of Rudin. It is closed under multiplication, by Theorem 9.2(c) of Rudin and because $L^{1}(\mathbb{R})$ is closed under convolution. It separates the points, that is, if $x, y \in \mathbb{R}$, then there is $g \in A$ such that $g(x) \neq g(y)$. Indeed, we can take $g=\widehat{\chi_{[a, b]}}$ for suitable a and b. Using the same functions, we see that for every $x \in \mathbb{R}$ there is $g \in A$ such that $g(x) \neq 0$. The version of the Stone-Weierstrass Theorem for locally compact spaces now implies that A is dense in $C_{0}(\mathbb{R})$. (To get this from the statement for compact spaces, extend elements of $C_{0}(\mathbb{R})$ to be continuous functions on the one point compactification of \mathbb{R}, and apply the version for compact spaces to the linear span of A and the constant functions.)

Second alternate solution to (6). (This solution assumes Rudin's Problem 9.7.)
The Schwartz space (the space S of Problem 9.7) is dense in $C_{0}(\mathbb{R})$, because the set of C^{∞} functions with compact support is dense in $C_{0}(\mathbb{R})$. (This needs proof, but is a standard result from another part of analysis.) Every function in S is the Fourier transform of a function in S, by Problem 9.7 , and S is easily seen to be contained in $L^{1}(\mathbb{R})$.

Problem 3 (Rudin, Chapter 9, Problem 8). Let $p \in[1, \infty]$, and let $q \in[1, \infty]$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. Prove that if $f \in L^{p}(\mathbb{R})$ and $g \in L^{q}(\mathbb{R})$, then $f * g$ is uniformly continuous. If $1<p<\infty$, prove that $f * g \in C_{0}(\mathbb{R})$. Show by example that $f * g$ need not be in $C_{0}(\mathbb{R})$ when $p=1$.

In the solution, it will be convenient to use the notation $\tau_{t}(f)(x)=f(x-t)$ and $\sigma(f)(x)=f(-x)$ for f in the vector space of all measurable functions from \mathbb{R} to \mathbb{C} and for $x, t \in \mathbb{R}$. The maps τ and σ are linear, and the invariance properties of Lebesgue measure imply that $\|\sigma(f)\|_{p}=\|f\|_{p}$ for all $p \in[1, \infty]$ and all $f \in L^{p}(\mathbb{R})$, and that $\left\|\tau_{t}(f)\right\|_{p}=\|f\|_{p}$ for all $p \in[1, \infty]$, all $t \in \mathbb{R}$, and all $f \in L^{p}(\mathbb{R})$.

Also, recall that in this problem convolution is supposed to be defined using Lebesgue measure as normalized for use with the Fourier transform:

$$
(f * g)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

However, exactly the same statements are true without this normalization.
We break the solution into several parts.
Proposition 1. Let $p \in[1, \infty]$, and let $q \in[1, \infty]$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. If $f \in L^{p}(\mathbb{R})$ and $g \in L^{q}(\mathbb{R})$, then $f * g$ is uniformly continuous.

Proof. We assume $p<\infty$. (Otherwise, exchange f and g and use $f * g=g * f$.) Let $\omega: L^{q}(\mathbb{R}) \rightarrow \mathbb{C}$ be the continuous linear functional given by

$$
\omega(f)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f g d m
$$

Then

$$
(f * g)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-y) g(y) d y=\omega\left(\sigma\left(\tau_{x}(f)\right)\right)
$$

We know that $x \mapsto \tau_{x}(f)$ is uniformly continuous by Theorem 9.5 of Rudin's book, and σ and ω are uniformly continuous because they are continuous and linear. So $f * g$ is the composite of uniformly continuous functions and hence uniformly continuous, as desired.

Alternate proof of Proposition 1. We assume $p<\infty$. (Otherwise, exchange f and g and use $f * g=g * f$.)

We first claim that for $t \in \mathbb{R}$ we have $\tau_{t}(f * g)=\tau_{t}(f) * g$. To prove this, let $x \in \mathbb{R}$. Then

$$
\begin{aligned}
\tau_{t}(f * g)(x) & =(f * g)(x-t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-t-y) g(y) d y \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tau_{t}(f)(x-y) g(y) d y=\left[\tau_{t}(f) * g\right](x)
\end{aligned}
$$

The claim is proved.
Next we claim that for every $h \in L^{p}(\mathbb{R}), k \in L^{q}(\mathbb{R})$, and $x \in \mathbb{R}$, we have $|(h * k)(x)| \leq\|h\|_{p}\|k\|_{q}$. This is essentially immediate from Hölder's inequality; the calculation is carried out in the proof of Lemma 2. (This part of the proof doesn't use Proposition 1.)

Now let $\varepsilon>0$. Use Theorem 9.5 of Rudin to choose $\delta>0$ such that for all $t \in \mathbb{R}$ with $|t|<\delta$, we have $\left\|\tau_{t}(f)-f\right\|_{p}<\varepsilon /\left(\|g\|_{q}+1\right)$. For $|t|<\delta$ and $x \in \mathbb{R}$, we then have, using the first claim at the second step and the second claim at the third step,

$$
\begin{aligned}
|(f * g)(x-t)-(f * g)(x)| & =\left|\tau_{t}(f * g)(x)-(f * g)(x)\right|=\left|\left(\left[\tau_{t}(f)-f\right] * g\right)(x)\right| \\
& \leq\left\|\tau_{t}(f)-f\right\|_{p}\|g\|_{q}<\left(\frac{\varepsilon}{\|g\|_{q}+1}\right)\|g\|_{q}<\varepsilon .
\end{aligned}
$$

This calculation shows that $f * g$ is uniformly continuous.
The following proof has also been used. In effect, it incorporates the proof of Theorem 9.5 of Rudin's book.

Second alternate proof of Proposition 1. We assume $p<\infty$. (Otherwise, exchange f and g and use $f * g=g * f$.)

We first claim that for every $h \in L^{p}(\mathbb{R}), k \in L^{q}(\mathbb{R})$, and $x \in \mathbb{R}$, we have $|(h * k)(x)| \leq\|h\|_{p}\|k\|_{q}$. This is essentially immediate from Hölder's inequality; the calculation is carried out in the proof of Lemma 2. (This part of the proof doesn't use Proposition 1.)

Now let $\varepsilon>0$. Choose $f_{0} \in C_{\mathrm{c}}(\mathbb{R})$ such that

$$
\left\|f_{0}-f\right\|_{p}<\frac{\varepsilon}{4\left(\|g\|_{g}+1\right)}
$$

Choose $r \geq 0$ such that $\operatorname{supp}\left(f_{0}\right) \subset[-r, r]$. Define

$$
\rho=\frac{\varepsilon}{2\|g\|_{q}+1}\left(\frac{\sqrt{2 \pi}}{2 r+1}\right)^{1 / p}
$$

Since f_{0} is uniformly continuous, we can choose $\delta>0$ such that whenever $x_{1}, x_{2} \in \mathbb{R}$ satisfy $\left|x_{1}-x_{2}\right|<\delta$, then $\left|f_{0}\left(x_{1}\right)-f_{0}\left(x_{2}\right)\right|<\rho$.

Now suppose that $x_{1}, x_{2} \in \mathbb{R}$ satisfy $\left|x_{1}-x_{2}\right|<\min (1, \delta)$; we prove that

$$
\left|(f * g)\left(x_{1}\right)-(f * g)\left(x_{2}\right)\right|<\varepsilon
$$

Without loss of generality $x_{1} \leq x_{2}$. Define functions $h_{1}, h_{2}: \mathbb{R} \rightarrow \mathbb{C}$ by $h_{1}(y)=$ $f_{0}\left(x_{1}-y\right)$ and $h_{2}(y)=f_{0}\left(x_{2}-y\right)$ for $y \in \mathbb{R}$. (These appear in the integrands when we consider $(f * g)\left(x_{1}\right)$ and $(f * g)\left(x_{2}\right)$.) If $h_{j}(y) \neq 0$ then $y \in\left[x_{j}-r, x_{j}+r\right]$, so that (since $x_{1} \leq x_{2}$) for every $x \notin\left[x_{1}-r, x_{2}+r\right]$ we have $h\left(x_{1}\right)-h\left(x_{2}\right)=0$. Meanwhile, if $x \in\left[x_{1}-r, x_{2}+r\right]$ then $\left|h_{1}(x)-h_{2}(x)\right|<\rho$. Since $x_{2}<x_{1}+1$, it therefore follows that

$$
\left\|h_{1}-h_{2}\right\|_{p}^{p} \leq \rho^{p}\left(\frac{1}{\sqrt{2 \pi}}\right) m\left(\left[x_{1}-r, x_{2}+r\right]\right)<\rho^{p}\left(\frac{1}{\sqrt{2 \pi}}\right)(2 r+1)=\left(\frac{\varepsilon}{2}\right)^{p}
$$

whence

$$
\left\|h_{1}-h_{2}\right\|_{p}<\frac{\varepsilon}{2\|g\|_{q}+1}
$$

Now, using the claim at the beginning of the proof several times,

$$
\begin{aligned}
\mid(f * g) & \left(x_{1}\right)-(f * g)\left(x_{2}\right) \mid \\
& \leq\left|\left(\left[f-f_{0}\right] * g\right)\left(x_{1}\right)\right|+\left|\left(\left[f-f_{0}\right] * g\right)\left(x_{2}\right)\right|+\left|\left(f_{0} * g\right)\left(x_{1}\right)-\left(f_{0} * g\right)\left(x_{2}\right)\right| \\
& \leq 2\left\|f-f_{0}\right\|_{p}\|g\|_{q}+\left|\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[f_{0}\left(x_{1}-y\right)-f_{0}\left(x_{2}-y\right)\right] g(y) d y\right| \\
& =2\left\|f-f_{0}\right\|_{p}\|g\|_{q}+\left|\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[h_{1}(x)-h_{2}(x)\right] g(y) d y\right| \\
& \leq 2\left\|f-f_{0}\right\|_{p}\|g\|_{q}+\left\|h_{1}-h_{2}\right\|_{p}\|g\|_{q} \\
& <\left(\frac{2 \varepsilon}{4\left(\|g\|_{g}+1\right)}+\frac{\varepsilon}{2\|g\|_{q}+1}\right)\|g\|_{q}<\varepsilon .
\end{aligned}
$$

This completes the proof.

Lemma 2. Let $p \in[1, \infty]$, and let $q \in[1, \infty]$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. If $f \in L^{p}(\mathbb{R})$ and $g \in L^{q}(\mathbb{R})$, then $f * g \in L^{\infty}(\mathbb{R})$ and $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$.
Proof. For every $x \in \mathbb{R}$ we have, using Hölder's inequality at the third step,

$$
|(f * g)(x)|=\left|\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-y) g(y) d y\right| \leq\left\|\left(\sigma \circ \tau_{x}\right)(f)\right\|_{p}\|g\|_{q}=\|f\|_{p}\|g\|_{q}
$$

Therefore $f * g$ is bounded by $\|f\|_{p}\|g\|_{q}$. That $f * g$ is measurable follows immediately from Proposition 1.
Proposition 3. Let $p \in(1, \infty)$, and let $q \in(1, \infty)$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. If $f \in L^{p}(\mathbb{R})$ and $g \in L^{q}(\mathbb{R})$, then $f * g \in C_{0}(\mathbb{R})$.

Proof. Lemma 2 implies that $(f, g) \rightarrow f * g$ is a (jointly) continuous map from $L^{p}(\mathbb{R}) \times L^{q}(\mathbb{R})$ to $L^{\infty}(\mathbb{R})$. It follows from Theorem 3.17 of Rudin that $C_{0}(\mathbb{R})$ is a closed subspace of $L^{\infty}(\mathbb{R})$. (Complete subsets of metric spaces are necessarily closed.) Therefore is suffices to find dense subsets $S \subset L^{p}(\mathbb{R})$ and $T \subset L^{q}(\mathbb{R})$ such that $f * g \in C_{0}(\mathbb{R})$ whenever $f \in S$ and $g \in T$.

We take $S=T=C_{\mathrm{c}}(\mathbb{R})$. Density follows from Theorem 3.14 of Rudin. Let $f, g \in C_{\mathrm{c}}(\mathbb{R})$. Proposition 1 implies that $f * g$ is continuous. Choose M such that $\operatorname{supp}(f), \operatorname{supp}(g) \subset[-M, M]$. If $|x|>2 M$, then for every $y \in \mathbb{R}$ at least one of y and $x-y$ must be in $\mathbb{R} \backslash[-M, M]$, so $f(x-y) g(y)=0$. It follows that $(f * g)(x)=0$. We have shown that $f * g$ has compact support, so $f * g \in C_{\mathrm{c}}(\mathbb{R}) \subset C_{0}(\mathbb{R})$.

Alternate proof. We prove directly that $f * g$ vanishes at infinity. Let $\varepsilon>0$.
Since $|f|^{p}$ and $|g|^{q}$ are integrable, there are $M, N \in[0, \infty)$ such that

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R} \backslash[-M, M]}|f(x)|^{p} d x<\left(\frac{\varepsilon}{2\|g\|_{q}+1}\right)^{p}
$$

and

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R} \backslash[-N, N]}|g(x)|^{q} d x<\left(\frac{\varepsilon}{2\|f\|_{p}+1}\right)^{q}
$$

We claim that $|(f * g)(x)|<\varepsilon$ whenever $|x|>M+N$.
To prove this, set

$$
f_{0}=\chi_{[-M, M]} f \quad \text { and } \quad g_{0}=\chi_{[-N, N]} g
$$

Then for every $x \in \mathbb{R}$ we have

$$
|(f * g)(x)| \leq\left|\left[f *\left(g-g_{0}\right)\right](x)\right|+\left|\left[\left(f-f_{0}\right) * g_{0}\right](x)\right|+\left|\left(f_{0} * g_{0}\right)(x)\right|
$$

Whenever $|x|>M+N$, we have $\left(f_{0} * g_{0}\right)(x)=0$, because in the integrand in its definition is always zero. Using Lemma 2 , for every $x \in \mathbb{R}$ we have

$$
\begin{aligned}
\left|\left[f *\left(g-g_{0}\right)\right](x)\right| & \leq\|f\|_{p}\left\|g-g_{0}\right\|_{q} \\
& =\|f\|_{p}\left(\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R} \backslash[-N, N]}|g(x)|^{q} d x\right)^{1 / q} \leq \frac{\varepsilon\|f\|_{p}}{2\|f\|_{p}+1}<\frac{\varepsilon}{2}
\end{aligned}
$$

and (since clearly $\left\|g_{0}\right\|_{q} \leq\|g\|_{q}$)

$$
\begin{aligned}
\left|\left[\left(f-f_{0}\right) * g\right](x)\right| & \leq\left\|f-f_{0}\right\|_{p}\left\|g_{0}\right\|_{q} \\
& =\left\|g_{0}\right\|_{q}\left(\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R} \backslash[-M, M]}|f(x)|^{p} d x\right)^{1 / p} \leq \frac{\varepsilon\left\|g_{0}\right\|_{q}}{2\|g\|_{q}+1}<\frac{\varepsilon}{2}
\end{aligned}
$$

So whenever $|x|>M+N$ we have $|(f * g)(x)|<\varepsilon$.
Proposition 4. There exists $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$ such that $f * g \notin C_{0}(\mathbb{R})$.
Proof. Take $f=\chi_{[-1,1]}$ and $g=1$. Then for every $x \in \mathbb{R}$ we have

$$
(f * g)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-y) g(y) d y=\left(\frac{1}{\sqrt{2 \pi}}\right) m([x-1, x+1])=\sqrt{\frac{2}{\pi}}
$$

Thus $f * g$ is a nonzero constant function, so does not vanish at ∞.

[^0]: Date: 28 February 2024.

