MATH 617 (WINTER 2024, PHILLIPS): HOMEWORK 8

Conventions on measures: m is ordinary Lebesgue measure, $\bar{m}=(2 \pi)^{-1 / 2} m$, and in expressions of the form $\int_{\mathbb{R}} f(x) d x$, ordinary Lebesgue measure is assumed.
Problem 1 (Rudin, Chapter 9, Problem 4). Give an explicit example of a function $f \in L^{2}(\mathbb{R})$ such that $f \notin L^{1}(\mathbb{R})$ but $\widehat{f} \in L^{1}(\mathbb{R})$. Under what circumstances can this happen?
Problem 2 (Rudin, Chapter 9, Problem 5). Let $f \in L^{1}(\mathbb{R})$, and suppose that

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}}|t \widehat{f}(t)| d t
$$

is finite. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{C}$ such that $f(x)=g(x)$ for almost all $x \in \mathbb{R}$ and such that for all $x \in \mathbb{R}$ we have

$$
g^{\prime}(x)=\frac{i}{\sqrt{2 \pi}} \int_{\mathbb{R}} t \widehat{f}(t) e^{i x t} d t
$$

Problem 3 (Rudin, Chapter 9, Problem 7). Let S be the set of all C^{∞} functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that for all $m, n \in \mathbb{Z}_{\geq 0}$ we have

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|x^{n} f^{(m)}(x)\right|<\infty \tag{1}
\end{equation*}
$$

Prove that $f \mapsto \widehat{f}$ is a bijection from S to S. Give examples of nonzero elements of S.

Comments: The space S is a topological vector space with topology given by the seminorms implicit in (1) for $m, n \in \mathbb{Z}_{\geq 0}$, and the map $f \mapsto \widehat{f}$ is a homeomorphism. Also, one gets the same topology with different choices of seminorms. For example, one could use the family of seminorms given by

$$
\|f\|_{m, n}=\left(\int_{\mathbb{R}}\left(1+x^{2 n}\right)^{1 / 2}\left|f^{(m)}(x)\right|^{2} d \bar{m}(x)\right)^{1 / 2}
$$

for $m, n \in \mathbb{Z}_{\geq 0}$, or an L^{p} version of these seminorms for any $p \in[1, \infty)$. The reason is that arbitrarily large powers of x appear. For example, if f is continuous and $x \mapsto x^{2} f(x)$ is bounded, then f is an L^{1} function on \mathbb{R}.
Problem 4 (Rudin, Chapter 9, Problem 9). Let $p \in[1, \infty)$, let $f \in L^{p}(\mathbb{R})$, and define $g: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
g(x)=\int_{x}^{x+1} f(t) d t
$$

Prove that $g \in C_{0}(\mathbb{R})$. What can you say if $f \in L^{\infty}(\mathbb{R})$?

[^0]
[^0]: Date: 27 February 2024.

