MATH 617 (WINTER 2024, PHILLIPS): HOMEWORK 9

Conventions on measures: m is ordinary Lebesgue measure, $\bar{m}=(2 \pi)^{-1 / 2} m$, and in expressions of the form $\int_{\mathbb{R}} f(x) d x$, ordinary Lebesgue measure is assumed.
Problem 1. Let X be a locally compact σ-compact Hausdorff space. Prove that there is a sequence $\left(g_{n}\right)_{n \in \mathbb{Z}_{>0}}$ in $C_{0}(X)$ consisting of functions with compact support and with values in $[0,1]$ such that for every $f \in C_{0}(X)$ we have $\lim _{n \rightarrow \infty} \| g_{n} f-$ $f \|_{\infty}=0$.

If X is not σ-compact, one needs a net instead of a sequence. You will need to prove that there are compact subsets $K_{1}, K_{2}, \ldots \subset X$ such that

$$
K_{1} \subset \operatorname{int}\left(K_{2}\right) \subset K_{2} \subset \operatorname{int}\left(K_{3}\right) \subset K_{3} \subset \cdots \quad \text { and } \quad \bigcup_{n=1}^{\infty} K_{n}=X
$$

(I didn't find this explicitly in Rudin's book, but maybe I didn't look in the right place.)
Problem 2. Give a "direct" proof of the following part of Theorem 9.6 of Rudin's book: if $f \in L^{1}$ then $\widehat{f} \in C_{0}(\mathbb{R})$. That is, prove this first when f is the characteristic function of a bounded interval, use this result and approximation to prove $\widehat{f} \in$ $C_{0}(\mathbb{R})$ when $f \in C_{\mathrm{c}}(\mathbb{R})$, and then use approximation to prove $\widehat{f} \in C_{0}(\mathbb{R})$ for general $f \in L^{1}$.

You will need $|\widehat{f}(t)| \leq\|f\|_{1}$ for all $t \in \mathbb{R}$. This proof takes longer than Rudin's proof, but the methods are useful much more generally, and the first step explains why the result is even true.

Problem 3 counts as two ordinary problems.
Problem 3 (Rudin, Chapter 9, Problem 13abc). For $c \in(0, \infty)$ define $f_{c}: \mathbb{R} \rightarrow \mathbb{C}$ by $f_{c}(x)=\exp \left(-c x^{2}\right)$ for $x \in \mathbb{R}$.
(1) Compute \widehat{f}_{c}.
(2) Prove that there exists a unique $c \in(0, \infty)$ such that $\widehat{f}_{c}=f_{c}$.
(3) Let $a, b \in(0, \infty)$. Prove that there exist γ and c such that $f_{a} * f_{b}=\gamma f_{c}$, and find explicit formulas for γ and c in terms of a and b.
You may take as known the result that $\int_{-\infty_{2}}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$. (This is proved by writing the square of the integral as $\int_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d x d y$ and computing it with polar coordinates in \mathbb{R}^{2}.)

Hint for part (1). One method (not the only possible method) is to let $g=\widehat{f}_{c}$, and use integration by parts to get $2 c g^{\prime}(t)+t g(t)=0$ for all $t \in \mathbb{R}$. If you use this method, you will need to prove (directly, or by citing theorems) that this equation, together with other information you have, determines g uniquely.
Problem 4. Let X be a topological space. Prove that X is Hausdorff if and only if every net in X has an most one limit. Give an example to show that this result fails if one uses sequences in place of nets.

Hint for the example. Use a modification of the set of ordinals less than or equal to the first uncountable ordinal.

Date: 9 March 2024.

