
MATH 617 FINAL EXAM SOLUTIONS (WINTER 2007)

1. (10 points) State the Radon-Nikodym Theorem and the Lebesgue Decomposi-
tion Theorem.

(These are usually considered two separate theorems. They were combined in the
book, and you can give the combined statement if you like.)

Solution: For the combined statement, see Theorem 6.10 of Rudin’s book. Here
are the separate statements:

Radon-Nikodym Theorem. Let (X,M, µ) be a σ-finite measure space, with
µ a positive measure. Let ν be a complex measure defined on the σ-algebra M,
and assume ν is absolutely continuous with respect to µ. Then there is a unique
h ∈ L1(µ) (the Radon-Nikodym derivative of ν with respect to µ) such that ν(E) =∫
E
h dµ for all E ∈ M. (In terms of functions, the uniqueness assertion is that any

other function with this property must be equal to h almost everywhere [µ].)

Lebesgue Decomposition Theorem. Let (X,M, µ) be a σ-finite measure space,
with µ a positive measure. Let ν be a complex measure defined on the σ-algebra
M. Then there is a unique pair (λ, ϕ) of complex measures defined onM such that
ν = λ + ρ, λ is absolutely continuous with respect to µ, and ρ is mutually singular
with respect to µ.

2. (a) (10 points) State Fubini’s Theorem.

Fubini’s Theorem. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. Let
f : X × Y → [0,∞] be measurable with respect to M×N , or let f : X × Y → C
be integrable with respect to µ× ν. Then:

(1) For every y ∈ Y , the function x 7→ f(x, y) is measurable with respect toM,
and, in the second case, for almost every y with respect to ν, this function
is integrable with respect to µ.

(2) The function y 7→
∫
X
f(x, y) dµ(x) is measurable with respect to ν, and in

the second case this function is integrable with respect to ν.
(3)

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y) =

∫
X×Y f d(µ× ν).

The version above compares only one iterated integral with the integral with
respect to the product measure. It is perfectly acceptable to compare the other one,
or both. I will also accept the version for the completion of the product of complete
measures, provided everything is correctly stated.

(b) (35 points) Define f : (0, 1)× (0, 1)→ R by

f(x, y) =

{
0 0 < x ≤ y < 1
x−3/2 sin(1/(xy)) 0 < y < x < 1.
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Prove that ∫ 1

0

(∫ 1

0

f(x, y) dx

)
dy =

∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx.

Solution: We will use Fubini’s Theorem.
We first show that f is measurable. The function g(x, y) = x−3/2 sin(1/(xy)) is

continuous on (0, 1)× (0, 1), hence measurable. The set T = {(x, y) ∈ R2 : 0 < y <
x < 1} is open, so χT is measurable. Therefore χTg is measurable, but this function
is equal to f .

Next, we show that f is integrable on (0, 1)×(0, 1). Set Define f : (0, 1)×(0, 1)→
R by

h(x, y) =

{
0 0 < x ≤ y < 1
x−3/2 0 < y < x < 1.

This function is measurable by the same reasoning as for f , and it is nonnegative.
It is useful because |f | ≤ h.

Let m be Lebesgue measure on (0, 1). Applying Fubini’s Theorem for nonnegative
functions, we get∫

(0,1)×(0,1)
h d(m×m)(x, y) =

∫ 1

0

∫ x

0

x−3/2 dy dx =

∫ 1

0

x−1/2 dx = 2.

So h is integrable. Therefore f is integrable.
Now Fubini’s Theorem for integrable functions implies that∫ 1

0

(∫ 1

0

f(x, y) dx

)
dy =

∫
(0,1)×(0,1)

f d(m×m) =

∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx,

as desired.

Remark: Since f takes both positive and negative values, one may not apply
Fubini’s Theorem without checking integrability first. Much of the credit is therefore
for doing this step.

3. (a) (5 points) State the definition of a Lebesgue point.

Solution: This is Definition 7.6 of Rudin’s book. It is repeated here for reference
in the next part of the problem.

Definition. Let f ∈ L1(Rd), and let x ∈ Rd. Then x is a Lebesgue point of f is

lim
r→0

1

m(Br(x))

∫
Br(x)

|f − f(x)| dm = 0.

Here m is Lebesgue measure on Rd, and

Br(x) = {y ∈ Rd : ‖y − x‖2 < r}.



(b) (35 points) Let E be the subset of R2 given by

E =
{

(x, y) ∈ R2 : − 1 ≤ x ≤ 1, −1 ≤ y ≤
√
|x|
}
.

Consider the points in R2:

(−7, −17), (0, −1),
(
0, −1

2

)
, (0, 0),

(
1
2
,
√

1
2

)
.

For each of the five points c listed above, determine, with proof, whether there exists
a number λc ∈ C such that c is a Lebesgue point of the function

f(p) =

{
λc p = c
χE(p) p 6= c.

Solution: Suppose x 6∈ E. (In particular, this applies to (−7, −17).) Since E is
closed, we have Br(x) ∩ E = ∅ for all sufficiently small r. (Taking r < dist(x,E)
will do.) So x is a Lebesgue point of χE. In particular, for c = (−7, −17), taking
λc = 0 = χE(c) will work.

Next consider x ∈ int(E). (In particular, this applies to
(
0, −1

2

)
.) Then Br(x) ∩

E = Br(x) for all sufficiently small r. (Taking r < dist(x, R2 \E) will do.) So again
x is a Lebesgue point of χE. In particular, for c =

(
0, −1

2

)
, taking λc = 0 = χE(c)

will work.
Next consider c = (0, −1). For all r ≤ 1, we have

m(Br(c) ∩ E) = 1
2
m(Br(c)) and m(Br(c) ∩ (R2 \ E)) = 1

2
m(Br(c)).

If we redefine f(c) to be λ, then for r < 1 we have

1

m(Br(c))

∫
Br(c)

|f − λ| dm =
1

m(Br(c))

(∫
Br(c)∩E

|λ| dm+

∫
Br(c)∩(R2\E)

|1− λ| dm
)

= 1
2
|λ|+ 1

2
|1− λ|.

This does not approach zero for any value of λ, so λc does not exist.

Next let c =
(
1
2
,
√

1
2

)
. It is possible to show, using differentiability of the function

f(a) =
√
a at t, that

lim
r→0

1

m(Br(c))

∫
Br(c)

|f − λ| dm = 1
2
|λ|+ 1

2
|1− λ|,

just as for c = (0, −1). However, there is an easier approach. Recall that if (Sn) is
a sequence of sets which shrinks nicely to c, and if c is a Lebesgue point of f , then

lim
n→∞

1

m(Sn)

∫
Sn

|f − f(c)| dm = 0.

This implies

lim
n→∞

m(Sn ∩ E)

m(Sn)
= f(c) = λc.



Now set t = 1
2
, and choose

Sn =
([
t, t+ 1

n

]
×
[√

t− 1
n
,
√
t
])

and Tn =
([
t− 1

n
, t
]
×
[√

t,
√
t+ 1

n

])
.

Here is a picture, in which Sn is the lower right black square and Tn is the upper
left black square:
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These sets are easily seen to shrink nicely to x. If n ≥ 2, then the first of the
two products in this definition is contained in E, and the second is disjoint from E
(except for the point x = (t,

√
t) itself). Therefore

lim
n→∞

m(Sn ∩ E)

m(Sn)
= 1 and lim

n→∞

m(Tn ∩ E)

m(Tn)
= 0.

Since we can’t have both λc = 0 and λc = 1, it follows that λc does not exist.
Finally, we consider the point c = (0, 0). For 0 < r < 1, one can check that

Br(x) ∩ (R2 \ E) is contained in the sector of Br(0) between the lines through the
origin with slopes

√
r

r
=

1√
r

and −
√
r

r
= − 1√

r

in the upper half plane, that is, the set

Cr =

{
(ρ cos(θ), ρ sin(θ)) : 0 ≤ ρ < r, arctan

(
1√
r

)
< θ < π − arctan

(
1√
r

)}
.

Therefore

1 ≥ m(Br(0) ∩ E)

m(Br(0))
≥ 1− m(Cr)

m(Br(0))
= 1− 1

2π

(
π − 2 arctan

(
1√
r

))
.



Since

lim
r→0

arctan

(
1√
r

)
=
π

2
,

we get

lim
r→0

m(Br(0) ∩ E)

m(Br(0))
= 1.

This shows that (0, 0) is a Lebesgue point of χE, even though it is on the boundary
of E. In particular, we can take λc = 1.

4. (15 points) Let (X,M, µ) be a measure space. Let M(X) be the Banach space
of all complex measures defined on the σ-algebra M. Let E ⊂ M(X) be the set
of all measures in M(X) which are absolutely continuous with respect to µ. Prove
that E is a closed subspace of M(X).

Solution: The proof that E is a vector subspace is easy, and is omitted. We show
that E is closed. Let (νn) be a sequence in E and suppose ‖νn − ν‖ → 0. For
B ∈M, we have

|νn(B)− ν(B)| ≤ |νn(B)− ν(B)|+ |νn(X \B)− ν(X \B)| ≤ ‖νn − ν‖.

Therefore νn(B)→ ν(B) for all B ∈M.
Let N ∈M satisfy µ(N) = 0. Then

ν(N) = lim
n→∞

νn(N) = lim
n→∞

0 = 0.

This shows that ν is absolutely continuous with respect to µ, as desired.

5. (20 points) Let E and F be Banach spaces, and let a : E → F be an injective
bounded linear map whose range a(E) ⊂ F is closed. Prove that there is δ > 0 such
that ‖aξ‖ ≥ δ‖ξ‖ for all ξ ∈ E.

Solution: Let F0 = a(E), and let a0 : E → F0 be the map a with restricted
codomain. Then F0 is a closed subspace of a Banach space, hence also a Banach
space. Moreover, a0 is a bijective bounded linear map between Banach spaces. The
Open Mapping Theorem therefore implies that a−10 is also bounded. It is easy to
check that δ = ‖a−10 ‖−1 satisfies the required conditions.

6. (40 points) Let E be the set of bounded complex sequences ξ = (ξ(n))n∈N such
that limn→∞ ξ(n) exists. For ξ ∈ E define ‖ξ‖ = supn∈N |ξ(n)|.

Prove carefully that E is a vector space, that ‖ · ‖ is a norm on E, and that E is
a Banach space. (A large part of the credit is for the last part.)

7. (30 points) Let E be a Banach space. Prove or disprove: If ω : E → C is a
linear functional such that |ω(ξ)| < 1 for all ξ ∈ E with ‖ξ‖ = 1, then ‖ω‖ < 1.



Solution: The statement is false. Here is one of the simplest examples. Take
E = l1, and for ξ = (ξn)n∈N ∈ l1 set

ω(ξ) =
∞∑
n=1

(
1− 1

n

)
ξn.

We verify the hypothesis. Let ξ ∈ l1 satisfy ‖ξ‖ = 1. Choose n with ξn 6= 0. Then

|ω(ξ)| ≤
(
1− 1

n

)
|ξn|+

∑
m6=n

(
1− 1

m

)
|ξm|

≤
∞∑

m=1

|ξm| − 1
n
|ξn| = 1− 1

n
|ξn| < 1.

We show that the supposed conclusion fails, by showing that, for every ε > 0,
there is ξ ∈ E such that ‖ξ‖ = 1 and |ω(ξ)| > 1 − ε. Indeed, choose n ∈ N such
that 1

n
< ε, and take

ξm =

{
1 m = n
0 m 6= n.

Then ‖ξ‖ = 1 and ω(ξ) = 1− 1
n
> 1− ε.


