MATH 618 (SPRING 2010): FINAL EXAM SOLUTIONS

Instructions: All lemmas, claims, examples, counterexamples, etc. require proof,
except when explicitly stated otherwise.

Closed book: No notes, books, calculators, cell phones, or other electronic de-
vices.

1. (a) (10 points) State Morera’s Theorem.

Solution. Theorem 10.17 of Rudin: Let 2 C C be open, and let f: Q@ — C be
continuous. Suppose that for every closed triangle in 2 with boundary path v, one
has fv f(¢)d¢ = 0. Then f is holomorphic on €. O

The continuity hypothesis is essential.
(b) (10 points) State Cauchy’s Formula for a convex set.

Solution. This is 10.15 of Rudin: Let Q C C be a convex open set. Let v be a
closed path in Q, and let f: Q@ — C be a holomorphic function. Then for every

z € O\ Ran(vy), we have
1 Q.

(c) (10 points) State the Fourier Inversion Theorem.

Solution. Theorem 9.11 of Rudin: Let f € L!(R), and suppose that also f € L'(R).

For z € R set
1 [
) = — t)ett® dt.
o() 5;/mfo

Then g = f almost everywhere. (]

Rudin also includes the statement that g € Cy(R).
Substantial partial credit will be given for the version for L?(R), Theorem 9.13(d)
of Rudin.
2. (30 points) Let f: C — C be an entire function such that
F(242010) = (=) and f(z+3) = f(2)
for all z € C. Prove that f is constant.
Solution. Let

R={z+iy: z€[0,2010] and y € [0,1]} and M =sup|f(z)].
zER

This number is finite because R is compact and f is continuous. We show |f(z)] <
M for all z € C. Liouville’s Theorem will then imply that f is constant.
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Let z € C. Choose m, n € Z such that
Re(z) —2010m € [0, 2010) and Im(z) —n € [0,1).
Then z — (2010 m + in) € R, so (using the periodicity hypotheses)
[f(2)] = [f(z = (2010m + in))| < M.
This completes the proof. [

3. (25 points) Give an example of a measurable function f: R — C such that
there is g € L?(R) with § = £, but such that there is no g € L'(R) with g = f.

Solution. Set f = x[_1,1)- Then f is not the Fourier transform of a function in

L'(R), because f is not continuous. However, f is the Fourier transform of a
function in L?(R), because f € L?(R).
Of course, there are many other possible choices for f. ([l

4. (a) (40 points) Evaluate
0 o—(z—i)? 00 o —(a+i)?
R
oo T oo T F

0 o—(z—i)? 0o o= (z+i)?
11:/ 7idx and IQZ/ —dx,

—o T — 00 T+

Solution. Set

so we are to find I; — I».

First, let’s check that these integrals actually exist. We have
e—(@—1)® |e—x2+2i1‘+1| |€—$2+1| o
= = S e-e x
Vi +1 VaZz +1

b

T —1
and e~*" is integrable on (=00, o), so the integrand for I is in L!'(R). The same
estimate holds for I.

Set f(z) = %e*'zz for z € C\ {0}. For > 0 let 7,1 be the straight line path
from —r — i to r — 4, with domain [0, 2r], let v, 3 be the straight line path from
r — i to r+ i, with domain [2r, 2r 4 2], let v, 2 be the straight line path from r + ¢
to —r + ¢, with domain [2r + 2, 4r 4 2], and let 7,4 be the straight line path from
—r+1i to —r — i, with domain [4r + 2, 47 + 4]. (The indexing is out of sequence, to
match the names I; and I already chosen.) Let ~, be the concatenation of these
paths, which is a piecewise C! closed path in C\ {0} with domain [0, 4r + 4].

We claim that Ind, (0) = 1. We use Theorem 10.37 of Rudin. Note that
Ind,, (si) has the same value for all s < —1, by continuity of the index. Since
{si: s € (—o0, —1) is unbounded, this value must be zero. Set p = min(r, 1). Apply
Theorem 10.37 of Rudin, with @ = —i and b = p. We have

Dy ={z€ B,(—1): Im(2) > -1} and D_ ={z¢€ B,(—1): Im(z) < —1}.

(These sets are both connected because they are convex.) It follows that for all
e € (0,p), we have Ind,, ((—1 4 ¢)i) = 1. The set

U={z€C:|Re(z)] <rand [Im(z)| < 1}

is a convex, hence connected, open set contained in C\Ran(+,). Therefore Ind,, ()
has the same value for all z € U. So Ind,, (0) = 1, proving the claim.



(One can also use a homotopy from ~ to a positively oriented circle with center
zero.)
Therefore

/ f(z)dz = 2miRes(f;0)

"

by the Residue Theorem. Using the series expansion

B 1 i (_1)n22n71
Tz n! ’

n=0 n=0

we calculate Res(f;0) = 1.
To simplify the notation, set

Observe that

T (w—i)? r 6_(I+i)2
Il(r):/ ———dz and Ix(r)= / — dz.

—y T _r T+

(The sign in the second one comes from the negative orientation.) Therefore

lim, oo I1(r) = I and lim,_, o I3(r) = —I5. Furthermore,
(r+zt)2 1 | —rZ—irt+t? ‘ 2 —r241
e e e
I = dt| < dt < .
b= ‘/ it —[1 N

Therefore lim,_, o, I3(r) = 0. The same estimate shows that lim, o, I4(r) = 0. Now

27 = lim f(z)dz = Yim [I1(r) + Ia(r) + I3(r) + I4(r)] = — [+ 0+ 0.

So I1—12:27T’i. O
(b) (10 points) Use the result of Part (a) to evaluate
oo —(z—1i)? 00 o—(z+i)?
/ e dxr and / 67, dx.
oo T — 4 oo Tt

Solution. As in the previous solution, call these integrals I; and I>. We calculate
the real and imaginary parts of I:

I /OO (z + i)‘fIQHiIJr1 d /°° (x + 4)[cos(2z) + z'sin(?:r)]e””%r1 J
= = .
e @i i) . 22 +1
_ /OC [ cos(2) — sin(2a)]e~""+] Qo+ i /°° [cos(22) +  sin(2z)]e" 1 "
B —0o0 .’II2 + 1 —co .272 + 1 ’

The integrand in the real part is an odd function, so that integral is zero.
Since the integrands are complex conjugates of each other, one gets I = ;. Now
combining the equations

Re(I1) =Re(l2) =0, Im(lr) =-Im(l;), and I — I, = 2w,

we get [y = wi and I, = —7i. O



5. (30 points) Let D = {z € C: |z| < 1}. Let A(D) C C(D) be the disk algebra,
the closed subspace of C(E) given by

A(D)={feC(D): f|p is holomorphic}.

(You need not prove that A(D) is a subspace or that it is closed in C'(D).)
Prove that there exists a bounded linear functional w: C(D) — C such that

w(f) = f'(3) for all f e A(D).

Solution. Define wy: A(D) — C by wo(f) = f'(3). We claim that wy is continuous.
Suppose (fn)nez., is a sequence in A(D) such that f, — fin A(D). Then f,|p —
f|p uniformly, and in particular f,|p — f|p uniformly on compact sets. Therefore
filp — f'|p uniformly on compact sets. In particular, lim,_. f,(3) = f/(3)-
This shows that wg is continuous.

The Hahn-Banach Theorem now implies that there is a bounded linear functional
w:C(ﬁ) — C such that w|4p) = wo. O

Alternate solution. Let wg be as in the first solution. Instead of proving that wyq is
continuous, we give an explicit bound on ||wg||. Let f € A(D). Since f is holomor-
phic on Bl/g(%), Cauchy’s Estimates show that

|f’(%)| < 2sup (|f(2)]: z € B1/2<%)} < 2[|£]|.
Thus |lwo|| < 2.
Now apply the Hahn-Banach Theorem as in the first solution. O

Second alternate solution (sketch). We give an explicit formula for w. Specifically,
define v: [0,27] — C by y(t) = 1 + Le®. Then define

1 f(z
w(f) =5 / % da
™y (3-2)
for f € C(ﬁ). Then w is obviously linear. The computation, valid for f € C (E),

o W, 2
/Jﬁ@ﬂigmﬁ:; 223 | f(y) dt < 4| |
0 |§ - W(t)| mJo

implies that ||w| < 4. That w(f) = f/(3) for all f € A(D) follows from the form of
Cauchy’s Formula that gives derivatives of f in terms of path integrals, as in one
of the homework problems. You would need to prove the appropriate formula, but
a fair amount of partial credit will be given even if you don’t. O

1
w()] € 5

Remark: The optimal estimate ||w|| < 2 is obtained by the method of the last

solution by taking y(t) = § 4+ 4€™ or y(t) = e’. A bit more work is needed, since

these paths do not satisfy Ran(vy) C D. One can show, however, that they do give
I'(3):
6. (35 points) Let f: R — R be an integrable function such that f(z) > 0 for
all z € R. Prove that for all ¢ # 0, we have Re(f(t)) < f(0).
Solution. We have L e
fo) =5 [ s

In particular, f(0) is real and nonnegative.



Now let ¢t € R\ {0}. Then

Re(f(t)) = Re (2177 /_O; e~ f(z) dx)

= 5 |_eostcimsyn = o [ costia) i)

Set I = [Z, 2%]. Then cos(tz) < —3% for all x € 1.
We claim that there is ¢ > 0 and a subset E C I with Lebesgue measure
m(E) > 0 such that f(z) > ¢ for all x € E. If not, for n € Z~q set set E, = {z €

I: f(z) > 1}. Then m(E,) = 0. Therefore the set

{zel: f(x >O}_UE

has measure zero, which is impossible because m(I) > 0 and f(z) > 0 for all x € R.
This contradiction proves the claim.
Now we have

—~ 1 8] 1 1
Re(f®) =5, | eosttn)f@)de <o | f@)dat g | (= 3)edo
/ flayde — ) = o) - E) < Fo)
This completes the proof. 0

Remark: In fact, it is true that |f(t)| < f(O) for t # 0, although this takes a bit
more work to prove.

Extra Credit. (40 extra credit points) Let D = {z € C: |z| < 1}. Prove that the
series
o 2"+1

2

n=1 n
converges to a continuous function f(z) on D which is holomorphic on D. Further
prove (almost all the credit is for this part) that there does not exist any pair (€2, g)
in which Q is a region with 2N 9D # @ and g is a holomorphic function on €2 such

that glonp = flanp-

Solution. The series converges uniformly on D because |22"T1/n?| < L for 2 € D
and )| — < co. Therefore f is continuous.

If we wrlte f(z) =307 jcnz™, then |c,| <1 for all n. It is immediate that the
series has radius of convergence at least 1. (This also follows from the previous
paragraph.) Therefore f is holomorphic on D.

The main step in proving the last statement is to show that lim,_,;- Re(f'(rz)) =
oo for every z of the form exp(27ik/2!) with k € Z and | € Z~oU{0}. By the theorem
on term by term differentiation of power series, we have

n

= (274 1)22
=2

n=1



forall z € D. Fixk € Z and | € Z~oU{0}, and set z = exp(27ik/2!). Let 0 < r < 1.
Then for n > 1,
2"+ 1)(rz)?" (2" 4+ 1)r?"
2 - 2 )

n n

zl: (2 + 0l
For any M € R there is 19 < 1 and n > l such that

(271 + 1) on
n?

Set

> M + My,

and for rg < r < 1 we have

Re(f’(rz))gw_ (Zl: 2n+1 rz) )

n2

l
2" +1 2" + 1)|rz|*"
> @+ > @+ Dz ng‘w > (M + My) — My = M.

— 2
n
n=1

This completes the proof that lim,_,,- Re(f’(rz)) = oco.

Now suppose (2 is a region with Q N 9D # &, and suppose g is a holomorphic
function on Q such that glonp = flanp- Then we can choose k € Z and [ € Z~,U{0}
such that z = exp(2mik/2!) € Q. It follows from the previous paragraph that ¢’ is
not bounded on any neighborhood of z. This contradicts continuity of ¢’ at z. O

Remark: For the last part, it is not enough to show that the radius of conver-
gence of the power series is at most 1. Indeed, the series > - | z" has radius of
convergence 1, but one can take Q = C\ {1} and g(z) = (1 — 2)~!



