MATH 618 (SPRING 2010): FINAL EXAM SOLUTIONS

Instructions: All lemmas, claims, examples, counterexamples, etc. require proof, except when explicitly stated otherwise.

Closed book: No notes, books, calculators, cell phones, or other electronic devices.

1. (a) (10 points) State Morera's Theorem.

Solution. Theorem 10.17 of Rudin: Let $\Omega \subset \mathbb{C}$ be open, and let $f: \Omega \rightarrow \mathbb{C}$ be continuous. Suppose that for every closed triangle in Ω with boundary path γ, one has $\int_{\gamma} f(\zeta) d \zeta=0$. Then f is holomorphic on Ω.

The continuity hypothesis is essential.
(b) (10 points) State Cauchy's Formula for a convex set.

Solution. This is 10.15 of Rudin: Let $\Omega \subset \mathbb{C}$ be a convex open set. Let γ be a closed path in Ω, and let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. Then for every $z \in \Omega \backslash \operatorname{Ran}(\gamma)$, we have

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\operatorname{Ind}_{\gamma}(z) \cdot f(z)
$$

(c) (10 points) State the Fourier Inversion Theorem.

Solution. Theorem 9.11 of Rudin: Let $f \in L^{1}(\mathbb{R})$, and suppose that also $\widehat{f} \in L^{1}(\mathbb{R})$. For $x \in \mathbb{R}$ set

$$
g(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{f}(t) e^{i t x} d t
$$

Then $g=f$ almost everywhere.
Rudin also includes the statement that $g \in C_{0}(\mathbb{R})$.
Substantial partial credit will be given for the version for $L^{2}(\mathbb{R})$, Theorem 9.13(d) of Rudin.
2. (30 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that

$$
f(z+2010)=f(z) \quad \text { and } \quad f(z+i)=f(z)
$$

for all $z \in \mathbb{C}$. Prove that f is constant.
Solution. Let

$$
R=\{x+i y: x \in[0,2010] \text { and } y \in[0,1]\} \quad \text { and } \quad M=\sup _{z \in R}|f(z)| .
$$

This number is finite because R is compact and f is continuous. We show $|f(z)| \leq$ M for all $z \in \mathbb{C}$. Liouville's Theorem will then imply that f is constant.

Date: 7 June 2010.

Let $z \in \mathbb{C}$. Choose $m, n \in \mathbb{Z}$ such that

$$
\operatorname{Re}(z)-2010 m \in[0,2010) \text { and } \operatorname{Im}(z)-n \in[0,1)
$$

Then $z-(2010 m+i n) \in R$, so (using the periodicity hypotheses)

$$
|f(z)|=|f(z-(2010 m+i n))| \leq M
$$

This completes the proof.
3. (25 points) Give an example of a measurable function $f: \mathbb{R} \rightarrow \mathbb{C}$ such that there is $g \in L^{2}(\mathbb{R})$ with $\widehat{g}=f$, but such that there is no $g \in L^{1}(\mathbb{R})$ with $\widehat{g}=f$.

Solution. Set $f=\chi_{[-1,1]}$. Then f is not the Fourier transform of a function in $L^{1}(\mathbb{R})$, because f is not continuous. However, f is the Fourier transform of a function in $L^{2}(\mathbb{R})$, because $f \in L^{2}(\mathbb{R})$.

Of course, there are many other possible choices for f.
4. (a) (40 points) Evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{-(x-i)^{2}}}{x-i} d x-\int_{-\infty}^{\infty} \frac{e^{-(x+i)^{2}}}{x+i} d x
$$

Solution. Set

$$
I_{1}=\int_{-\infty}^{\infty} \frac{e^{-(x-i)^{2}}}{x-i} d x \quad \text { and } \quad I_{2}=\int_{-\infty}^{\infty} \frac{e^{-(x+i)^{2}}}{x+i} d x
$$

so we are to find $I_{1}-I_{2}$.
First, let's check that these integrals actually exist. We have

$$
\left|\frac{e^{-(x-i)^{2}}}{x-i}\right|=\frac{\left|e^{-x^{2}+2 i x+1}\right|}{\sqrt{x^{2}+1}}=\frac{\left|e^{-x^{2}+1}\right|}{\sqrt{x^{2}+1}} \leq e \cdot e^{-x^{2}}
$$

and $e^{-x^{2}}$ is integrable on $(-\infty, \infty)$, so the integrand for I_{1} is in $L^{1}(\mathbb{R})$. The same estimate holds for I_{2}.

Set $f(z)=\frac{1}{z} e^{-z^{2}}$ for $z \in \mathbb{C} \backslash\{0\}$. For $r>0$ let $\gamma_{r, 1}$ be the straight line path from $-r-i$ to $r-i$, with domain $[0,2 r]$, let $\gamma_{r, 3}$ be the straight line path from $r-i$ to $r+i$, with domain $[2 r, 2 r+2]$, let $\gamma_{r, 2}$ be the straight line path from $r+i$ to $-r+i$, with domain $[2 r+2,4 r+2]$, and let $\gamma_{r, 4}$ be the straight line path from $-r+i$ to $-r-i$, with domain $[4 r+2,4 r+4]$. (The indexing is out of sequence, to match the names I_{1} and I_{2} already chosen.) Let γ_{r} be the concatenation of these paths, which is a piecewise C^{1} closed path in $\mathbb{C} \backslash\{0\}$ with domain $[0,4 r+4]$.

We claim that $\operatorname{Ind}_{\gamma_{r}}(0)=1$. We use Theorem 10.37 of Rudin. Note that $\operatorname{Ind}_{\gamma_{r}}(s i)$ has the same value for all $s<-1$, by continuity of the index. Since $\{s i: s \in(-\infty,-1)$ is unbounded, this value must be zero. Set $\rho=\min (r, 1)$. Apply Theorem 10.37 of Rudin, with $a=-i$ and $b=\rho$. We have

$$
D_{+}=\left\{z \in B_{\rho}(-i): \operatorname{Im}(z)>-1\right\} \quad \text { and } \quad D_{-}=\left\{z \in B_{\rho}(-i): \operatorname{Im}(z)<-1\right\}
$$

(These sets are both connected because they are convex.) It follows that for all $\varepsilon \in(0, \rho)$, we have $\operatorname{Ind}_{\gamma_{r}}((-1+\varepsilon) i)=1$. The set

$$
U=\{z \in \mathbb{C}:|\operatorname{Re}(z)|<r \text { and }|\operatorname{Im}(z)|<1\}
$$

is a convex, hence connected, open set contained in $\mathbb{C} \backslash \operatorname{Ran}\left(\gamma_{r}\right)$. Therefore $\operatorname{Ind}_{\gamma_{r}}(z)$ has the same value for all $z \in U$. So $\operatorname{Ind}_{\gamma_{r}}(0)=1$, proving the claim.
(One can also use a homotopy from γ to a positively oriented circle with center zero.)

Therefore

$$
\int_{\gamma_{r}} f(z) d z=2 \pi i \operatorname{Res}(f ; 0)
$$

by the Residue Theorem. Using the series expansion

$$
f(z)=\frac{1}{z} \sum_{n=0}^{\infty} \frac{\left(-z^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n-1}}{n!}
$$

we calculate $\operatorname{Res}(f ; 0)=1$.
To simplify the notation, set

$$
I_{k}(r)=\int_{\gamma_{r, k}} f(z) d z
$$

Observe that

$$
I_{1}(r)=\int_{-r}^{r} \frac{e^{-(x-i)^{2}}}{x-i} d x \quad \text { and } \quad I_{2}(r)=-\int_{-r}^{r} \frac{e^{-(x+i)^{2}}}{x+i} d x
$$

(The sign in the second one comes from the negative orientation.) Therefore $\lim _{r \rightarrow \infty} I_{1}(r)=I_{1}$ and $\lim _{r \rightarrow \infty} I_{2}(r)=-I_{2}$. Furthermore,

$$
\left|I_{3}(r)\right|=\left|\int_{-1}^{1} \frac{e^{-(r+i t)^{2}}}{r+i t} i d t\right| \leq \int_{-1}^{1} \frac{\left|e^{-r^{2}-i r t+t^{2}}\right|}{\sqrt{r^{2}+t^{2}}} d t \leq \frac{2 e^{-r^{2}+1}}{r}
$$

Therefore $\lim _{r \rightarrow \infty} I_{3}(r)=0$. The same estimate shows that $\lim _{r \rightarrow \infty} I_{4}(r)=0$. Now

$$
2 \pi i=\lim _{r \rightarrow \infty} \int_{\gamma_{r}} f(z) d z=\lim _{r \rightarrow \infty}\left[I_{1}(r)+I_{2}(r)+I_{3}(r)+I_{4}(r)\right]=I_{1}-I_{2}+0+0
$$

So $I_{1}-I_{2}=2 \pi i$.
(b) (10 points) Use the result of Part (a) to evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{-(x-i)^{2}}}{x-i} d x \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{e^{-(x+i)^{2}}}{x+i} d x
$$

Solution. As in the previous solution, call these integrals I_{1} and I_{2}. We calculate the real and imaginary parts of I_{1} :

$$
\begin{aligned}
I_{1} & =\int_{-\infty}^{\infty} \frac{(x+i) e^{-x^{2}+2 i x+1}}{(x+i)(x-i)} d x=\int_{-\infty}^{\infty} \frac{(x+i)[\cos (2 x)+i \sin (2 x)] e^{-x^{2}+1}}{x^{2}+1} d x \\
& =\int_{-\infty}^{\infty} \frac{[x \cos (2 x)-\sin (2 x)] e^{-x^{2}+1}}{x^{2}+1} d x+i \int_{-\infty}^{\infty} \frac{[\cos (2 x)+x \sin (2 x)] e^{-x^{2}+1}}{x^{2}+1} d x
\end{aligned}
$$

The integrand in the real part is an odd function, so that integral is zero.
Since the integrands are complex conjugates of each other, one gets $I_{2}=\overline{I_{1}}$. Now combining the equations

$$
\operatorname{Re}\left(I_{1}\right)=\operatorname{Re}\left(I_{2}\right)=0, \quad \operatorname{Im}\left(I_{2}\right)=-\operatorname{Im}\left(I_{1}\right), \quad \text { and } \quad I_{1}-I_{2}=2 \pi i
$$

we get $I_{1}=\pi i$ and $I_{2}=-\pi i$.
5. (30 points) Let $D=\{z \in \mathbb{C}:|z|<1\}$. Let $A(D) \subset C(\bar{D})$ be the disk algebra, the closed subspace of $C(\bar{D})$ given by

$$
A(D)=\left\{f \in C(\bar{D}):\left.f\right|_{D} \text { is holomorphic }\right\}
$$

(You need not prove that $A(D)$ is a subspace or that it is closed in $C(\bar{D})$.)
Prove that there exists a bounded linear functional $\omega: C(\bar{D}) \rightarrow \mathbb{C}$ such that $\omega(f)=f^{\prime}\left(\frac{1}{2}\right)$ for all $f \in A(D)$.

Solution. Define $\omega_{0}: A(D) \rightarrow \mathbb{C}$ by $\omega_{0}(f)=f^{\prime}\left(\frac{1}{2}\right)$. We claim that ω_{0} is continuous. Suppose $\left(f_{n}\right)_{n \in \mathbb{Z}_{>0}}$ is a sequence in $A(D)$ such that $f_{n} \rightarrow f$ in $A(D)$. Then $\left.f_{n}\right|_{D} \rightarrow$ $\left.f\right|_{D}$ uniformly, and in particular $\left.\left.f_{n}\right|_{D} \rightarrow f\right|_{D}$ uniformly on compact sets. Therefore $\left.\left.f_{n}^{\prime}\right|_{D} \rightarrow f^{\prime}\right|_{D}$ uniformly on compact sets. In particular, $\lim _{n \rightarrow \infty} f_{n}^{\prime}\left(\frac{1}{2}\right)=f^{\prime}\left(\frac{1}{2}\right)$. This shows that ω_{0} is continuous.

The Hahn-Banach Theorem now implies that there is a bounded linear functional $\omega: C(\bar{D}) \rightarrow \mathbb{C}$ such that $\left.\omega\right|_{A(D)}=\omega_{0}$.
Alternate solution. Let ω_{0} be as in the first solution. Instead of proving that ω_{0} is continuous, we give an explicit bound on $\left\|\omega_{0}\right\|$. Let $f \in A(D)$. Since f is holomorphic on $B_{1 / 2}\left(\frac{1}{2}\right)$, Cauchy's Estimates show that

$$
\left|f^{\prime}\left(\frac{1}{2}\right)\right| \leq 2 \sup \left(|f(z)|: z \in B_{1 / 2}\left(\frac{1}{2}\right)\right\} \leq 2\|f\| .
$$

Thus $\left\|\omega_{0}\right\| \leq 2$.
Now apply the Hahn-Banach Theorem as in the first solution.
Second alternate solution (sketch). We give an explicit formula for ω. Specifically, define $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ by $\gamma(t)=\frac{1}{2}+\frac{1}{4} e^{i t}$. Then define

$$
\omega(f)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(\frac{1}{2}-z\right)^{2}} d z
$$

for $f \in C(\bar{D})$. Then ω is obviously linear. The computation, valid for $f \in C(\bar{D})$,

$$
|\omega(f)| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{|f(\gamma(t))| \cdot\left|\gamma^{\prime}(t)\right|}{\left|\frac{1}{2}-\gamma(t)\right|^{2}} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} 4^{2} \cdot \frac{1}{4} \cdot|f(\gamma(t))| d t \leq 4\|f\|
$$

implies that $\|\omega\| \leq 4$. That $\omega(f)=f^{\prime}\left(\frac{1}{2}\right)$ for all $f \in A(D)$ follows from the form of Cauchy's Formula that gives derivatives of f in terms of path integrals, as in one of the homework problems. You would need to prove the appropriate formula, but a fair amount of partial credit will be given even if you don't.

Remark: The optimal estimate $\|\omega\| \leq 2$ is obtained by the method of the last solution by taking $\gamma(t)=\frac{1}{2}+\frac{1}{2} e^{i t}$ or $\gamma(t)=e^{i t}$. A bit more work is needed, since these paths do not satisfy $\operatorname{Ran}(\gamma) \subset D$. One can show, however, that they do give $f^{\prime}\left(\frac{1}{2}\right)$.
6. (35 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function such that $f(x)>0$ for all $x \in \mathbb{R}$. Prove that for all $t \neq 0$, we have $\operatorname{Re}(\widehat{f}(t))<\widehat{f}(0)$.

Solution. We have

$$
\widehat{f}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) d x
$$

In particular, $\widehat{f}(0)$ is real and nonnegative.

Now let $t \in \mathbb{R} \backslash\{0\}$. Then

$$
\begin{aligned}
\operatorname{Re}(\widehat{f}(t)) & =\operatorname{Re}\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} f(x) d x\right) \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \cos (-t x) f(x) d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \cos (t x) f(x) d x
\end{aligned}
$$

Set $I=\left[\frac{\pi}{3 t}, \frac{2 \pi}{3 t}\right]$. Then $\cos (t x) \leq-\frac{1}{2}$ for all $x \in I$.
We claim that there is $\varepsilon>0$ and a subset $E \subset I$ with Lebesgue measure $m(E)>0$ such that $f(x)>\varepsilon$ for all $x \in E$. If not, for $n \in \mathbb{Z}_{>0}$ set set $E_{n}=\{x \in$ $\left.I: f(x)>\frac{1}{n}\right\}$. Then $m\left(E_{n}\right)=0$. Therefore the set

$$
\{x \in I: f(x)>0\}=\bigcup_{n=1}^{\infty} E_{n}
$$

has measure zero, which is impossible because $m(I)>0$ and $f(x)>0$ for all $x \in \mathbb{R}$. This contradiction proves the claim.

Now we have

$$
\begin{aligned}
\operatorname{Re}(\widehat{f}(t)) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \cos (t x) f(x) d x \leq \frac{1}{2 \pi} \int_{\mathbb{R} \backslash E} f(x) d x+\frac{1}{2 \pi} \int_{E}\left(-\frac{1}{2}\right) \varepsilon d x \\
& \leq \frac{1}{2 \pi} \int_{\mathbb{R}} f(x) d x-\frac{\varepsilon m(E)}{4 \pi}=\widehat{f}(0)-\frac{\varepsilon m(E)}{4 \pi}<\widehat{f}(0)
\end{aligned}
$$

This completes the proof.
Remark: In fact, it is true that $|\widehat{f}(t)|<\widehat{f}(0)$ for $t \neq 0$, although this takes a bit more work to prove.

Extra Credit. (40 extra credit points) Let $D=\{z \in \mathbb{C}:|z|<1\}$. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{z^{2^{n}+1}}{n^{2}}
$$

converges to a continuous function $f(z)$ on \bar{D} which is holomorphic on D. Further prove (almost all the credit is for this part) that there does not exist any pair (Ω, g) in which Ω is a region with $\Omega \cap \partial D \neq \varnothing$ and g is a holomorphic function on Ω such that $\left.g\right|_{\Omega \cap D}=\left.f\right|_{\Omega \cap D}$.

Solution. The series converges uniformly on \bar{D} because $\left|z^{2^{n}+1} / n^{2}\right| \leq \frac{1}{n^{2}}$ for $z \in \bar{D}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$. Therefore f is continuous.

If we write $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$, then $\left|c_{n}\right| \leq 1$ for all n. It is immediate that the series has radius of convergence at least 1. (This also follows from the previous paragraph.) Therefore f is holomorphic on D.

The main step in proving the last statement is to show that $\lim _{r \rightarrow 1^{-}} \operatorname{Re}\left(f^{\prime}(r z)\right)=$ ∞ for every z of the form $\exp \left(2 \pi i k / 2^{l}\right)$ with $k \in \mathbb{Z}$ and $l \in \mathbb{Z}_{>0} \cup\{0\}$. By the theorem on term by term differentiation of power series, we have

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} \frac{\left(2^{n}+1\right) z^{2^{n}}}{n^{2}}
$$

for all $z \in D$. Fix $k \in \mathbb{Z}$ and $l \in \mathbb{Z}_{>0} \cup\{0\}$, and set $z=\exp \left(2 \pi i k / 2^{l}\right)$. Let $0<r<1$. Then for $n \geq l$,

$$
\frac{\left(2^{n}+1\right)(r z)^{2^{n}}}{n^{2}}=\frac{\left(2^{n}+1\right) r^{2^{n}}}{n^{2}}
$$

Set

$$
M_{0}=\sum_{n=1}^{l} \frac{\left(2^{n}+1\right)}{n^{2}}
$$

For any $M \in \mathbb{R}$ there is $r_{0}<1$ and $n \geq l$ such that

$$
\frac{\left(2^{n}+1\right) r_{0}^{2^{n}}}{n^{2}}>M+M_{0}
$$

and for $r_{0}<r<1$ we have

$$
\begin{aligned}
\operatorname{Re}\left(f^{\prime}(r z)\right) & \geq \frac{\left(2^{n}+1\right) r_{0}^{2^{n}}}{n^{2}}-\operatorname{Re}\left(\sum_{n=1}^{l} \frac{\left(2^{n}+1\right)(r z)^{2^{n}}}{n^{2}}\right) \\
& \geq \frac{\left(2^{n}+1\right) r_{0}^{2^{n}}}{n^{2}}-\sum_{n=1}^{l} \frac{\left(2^{n}+1\right)|r z|^{2^{n}}}{n^{2}}>\left(M+M_{0}\right)-M_{0}=M
\end{aligned}
$$

This completes the proof that $\lim _{r \rightarrow 1^{-}} \operatorname{Re}\left(f^{\prime}(r z)\right)=\infty$.
Now suppose Ω is a region with $\Omega \cap \partial D \neq \varnothing$, and suppose g is a holomorphic function on Ω such that $\left.g\right|_{\Omega \cap D}=\left.f\right|_{\Omega \cap D}$. Then we can choose $k \in \mathbb{Z}$ and $l \in \mathbb{Z}_{>0} \cup\{0\}$ such that $z=\exp \left(2 \pi i k / 2^{l}\right) \in \Omega$. It follows from the previous paragraph that g^{\prime} is not bounded on any neighborhood of z. This contradicts continuity of g^{\prime} at z.

Remark: For the last part, it is not enough to show that the radius of convergence of the power series is at most 1. Indeed, the series $\sum_{n=1}^{\infty} z^{n}$ has radius of convergence 1 , but one can take $\Omega=\mathbb{C} \backslash\{1\}$ and $g(z)=(1-z)^{-1}$.

