
MATH 618 (SPRING 2010): FINAL EXAM SOLUTIONS

Instructions: All lemmas, claims, examples, counterexamples, etc. require proof,
except when explicitly stated otherwise.

Closed book: No notes, books, calculators, cell phones, or other electronic de-
vices.

1. (a) (10 points) State Morera’s Theorem.

Solution. Theorem 10.17 of Rudin: Let Ω ⊂ C be open, and let f : Ω → C be
continuous. Suppose that for every closed triangle in Ω with boundary path γ, one
has

∫
γ

f(ζ) dζ = 0. Then f is holomorphic on Ω. �

The continuity hypothesis is essential.

(b) (10 points) State Cauchy’s Formula for a convex set.

Solution. This is 10.15 of Rudin: Let Ω ⊂ C be a convex open set. Let γ be a
closed path in Ω, and let f : Ω → C be a holomorphic function. Then for every
z ∈ Ω \ Ran(γ), we have

1
2πi

∫
γ

f(ζ)
ζ − z

dζ = Indγ(z) · f(z).

�

(c) (10 points) State the Fourier Inversion Theorem.

Solution. Theorem 9.11 of Rudin: Let f ∈ L1(R), and suppose that also f̂ ∈ L1(R).
For x ∈ R set

g(x) =
1√
2π

∫ ∞

−∞
f̂(t)eitx dt.

Then g = f almost everywhere. �

Rudin also includes the statement that g ∈ C0(R).
Substantial partial credit will be given for the version for L2(R), Theorem 9.13(d)

of Rudin.

2. (30 points) Let f : C → C be an entire function such that

f(z + 2010) = f(z) and f(z + i) = f(z)

for all z ∈ C. Prove that f is constant.

Solution. Let

R = {x + iy : x ∈ [0, 2010] and y ∈ [0, 1]} and M = sup
z∈R

|f(z)|.

This number is finite because R is compact and f is continuous. We show |f(z)| ≤
M for all z ∈ C. Liouville’s Theorem will then imply that f is constant.
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Let z ∈ C. Choose m, n ∈ Z such that

Re(z)− 2010 m ∈ [0, 2010) and Im(z)− n ∈ [0, 1).

Then z − (2010m + in) ∈ R, so (using the periodicity hypotheses)

|f(z)| = |f(z − (2010m + in))| ≤ M.

This completes the proof. �

3. (25 points) Give an example of a measurable function f : R → C such that
there is g ∈ L2(R) with ĝ = f, but such that there is no g ∈ L1(R) with ĝ = f.

Solution. Set f = χ[−1,1]. Then f is not the Fourier transform of a function in
L1(R), because f is not continuous. However, f is the Fourier transform of a
function in L2(R), because f ∈ L2(R).

Of course, there are many other possible choices for f. �

4. (a) (40 points) Evaluate∫ ∞

−∞

e−(x−i)2

x− i
dx−

∫ ∞

−∞

e−(x+i)2

x + i
dx.

Solution. Set

I1 =
∫ ∞

−∞

e−(x−i)2

x− i
dx and I2 =

∫ ∞

−∞

e−(x+i)2

x + i
dx,

so we are to find I1 − I2.
First, let’s check that these integrals actually exist. We have∣∣∣∣∣e−(x−i)2

x− i

∣∣∣∣∣ = |e−x2+2ix+1|√
x2 + 1

=
|e−x2+1|√

x2 + 1
≤ e · e−x2

,

and e−x2
is integrable on (−∞, ∞), so the integrand for I1 is in L1(R). The same

estimate holds for I2.
Set f(z) = 1

z e−z2
for z ∈ C \ {0}. For r > 0 let γr,1 be the straight line path

from −r − i to r − i, with domain [0, 2r], let γr,3 be the straight line path from
r − i to r + i, with domain [2r, 2r + 2], let γr,2 be the straight line path from r + i
to −r + i, with domain [2r + 2, 4r + 2], and let γr,4 be the straight line path from
−r + i to −r− i, with domain [4r + 2, 4r + 4]. (The indexing is out of sequence, to
match the names I1 and I2 already chosen.) Let γr be the concatenation of these
paths, which is a piecewise C1 closed path in C \ {0} with domain [0, 4r + 4].

We claim that Indγr (0) = 1. We use Theorem 10.37 of Rudin. Note that
Indγr (si) has the same value for all s < −1, by continuity of the index. Since
{si : s ∈ (−∞, −1) is unbounded, this value must be zero. Set ρ = min(r, 1). Apply
Theorem 10.37 of Rudin, with a = −i and b = ρ. We have

D+ = {z ∈ Bρ(−i) : Im(z) > −1} and D− = {z ∈ Bρ(−i) : Im(z) < −1}.

(These sets are both connected because they are convex.) It follows that for all
ε ∈ (0, ρ), we have Indγr

((−1 + ε)i) = 1. The set

U =
{
z ∈ C : |Re(z)| < r and |Im(z)| < 1

}
is a convex, hence connected, open set contained in C\Ran(γr). Therefore Indγr

(z)
has the same value for all z ∈ U. So Indγr

(0) = 1, proving the claim.



(One can also use a homotopy from γ to a positively oriented circle with center
zero.)

Therefore ∫
γr

f(z) dz = 2πiRes(f ; 0)

by the Residue Theorem. Using the series expansion

f(z) =
1
z

∞∑
n=0

(−z2)n

n!
=

∞∑
n=0

(−1)nz2n−1

n!
,

we calculate Res(f ; 0) = 1.
To simplify the notation, set

Ik(r) =
∫

γr,k

f(z) dz.

Observe that

I1(r) =
∫ r

−r

e−(x−i)2

x− i
dx and I2(r) = −

∫ r

−r

e−(x+i)2

x + i
dx.

(The sign in the second one comes from the negative orientation.) Therefore
limr→∞ I1(r) = I1 and limr→∞ I2(r) = −I2. Furthermore,

|I3(r)| =

∣∣∣∣∣
∫ 1

−1

e−(r+it)2

r + it
i dt

∣∣∣∣∣ ≤
∫ 1

−1

|e−r2−irt+t2 |√
r2 + t2

dt ≤ 2e−r2+1

r
.

Therefore limr→∞ I3(r) = 0. The same estimate shows that limr→∞ I4(r) = 0. Now

2πi = lim
r→∞

∫
γr

f(z) dz = lim
r→∞

[I1(r) + I2(r) + I3(r) + I4(r)] = I1 − I2 + 0 + 0.

So I1 − I2 = 2πi. �

(b) (10 points) Use the result of Part (a) to evaluate∫ ∞

−∞

e−(x−i)2

x− i
dx and

∫ ∞

−∞

e−(x+i)2

x + i
dx.

Solution. As in the previous solution, call these integrals I1 and I2. We calculate
the real and imaginary parts of I1:

I1 =
∫ ∞

−∞

(x + i)e−x2+2ix+1

(x + i)(x− i)
dx =

∫ ∞

−∞

(x + i)[cos(2x) + i sin(2x)]e−x2+1

x2 + 1
dx

=
∫ ∞

−∞

[x cos(2x)− sin(2x)]e−x2+1

x2 + 1
dx + i

∫ ∞

−∞

[cos(2x) + x sin(2x)]e−x2+1

x2 + 1
dx.

The integrand in the real part is an odd function, so that integral is zero.
Since the integrands are complex conjugates of each other, one gets I2 = I1. Now

combining the equations

Re(I1) = Re(I2) = 0, Im(I2) = −Im(I1), and I1 − I2 = 2πi,

we get I1 = πi and I2 = −πi. �



5. (30 points) Let D = {z ∈ C : |z| < 1}. Let A(D) ⊂ C
(
D
)

be the disk algebra,
the closed subspace of C

(
D
)

given by

A(D) =
{
f ∈ C

(
D
)
: f |D is holomorphic

}
.

(You need not prove that A(D) is a subspace or that it is closed in C
(
D
)
.)

Prove that there exists a bounded linear functional ω : C
(
D
)
→ C such that

ω(f) = f ′
(

1
2

)
for all f ∈ A(D).

Solution. Define ω0 : A(D) → C by ω0(f) = f ′
(

1
2

)
. We claim that ω0 is continuous.

Suppose (fn)n∈Z>0 is a sequence in A(D) such that fn → f in A(D). Then fn|D →
f |D uniformly, and in particular fn|D → f |D uniformly on compact sets. Therefore
f ′n|D → f ′|D uniformly on compact sets. In particular, limn→∞ f ′n

(
1
2

)
= f ′

(
1
2

)
.

This shows that ω0 is continuous.
The Hahn-Banach Theorem now implies that there is a bounded linear functional

ω : C
(
D
)
→ C such that ω|A(D) = ω0. �

Alternate solution. Let ω0 be as in the first solution. Instead of proving that ω0 is
continuous, we give an explicit bound on ‖ω0‖. Let f ∈ A(D). Since f is holomor-
phic on B1/2

(
1
2

)
, Cauchy’s Estimates show that∣∣f ′( 1

2

)∣∣ ≤ 2 sup
(
|f(z)| : z ∈ B1/2

(
1
2

)}
≤ 2‖f‖.

Thus ‖ω0‖ ≤ 2.
Now apply the Hahn-Banach Theorem as in the first solution. �

Second alternate solution (sketch). We give an explicit formula for ω. Specifically,
define γ : [0, 2π] → C by γ(t) = 1

2 + 1
4eit. Then define

ω(f) =
1

2πi

∫
γ

f(z)(
1
2 − z

)2 dz

for f ∈ C
(
D
)
. Then ω is obviously linear. The computation, valid for f ∈ C

(
D
)
,

|ω(f)| ≤ 1
2π

∫ 2π

0

|f(γ(t))| · |γ′(t)|∣∣ 1
2 − γ(t)

∣∣2 dt =
1
2π

∫ 2π

0

42 · 1
4 · |f(γ(t))| dt ≤ 4‖f‖

implies that ‖ω‖ ≤ 4. That ω(f) = f ′
(

1
2

)
for all f ∈ A(D) follows from the form of

Cauchy’s Formula that gives derivatives of f in terms of path integrals, as in one
of the homework problems. You would need to prove the appropriate formula, but
a fair amount of partial credit will be given even if you don’t. �

Remark: The optimal estimate ‖ω‖ ≤ 2 is obtained by the method of the last
solution by taking γ(t) = 1

2 + 1
2eit or γ(t) = eit. A bit more work is needed, since

these paths do not satisfy Ran(γ) ⊂ D. One can show, however, that they do give
f ′
(

1
2

)
.

6. (35 points) Let f : R → R be an integrable function such that f(x) > 0 for
all x ∈ R. Prove that for all t 6= 0, we have Re

(
f̂(t)

)
< f̂(0).

Solution. We have

f̂(0) =
1
2π

∫ ∞

−∞
f(x) dx.

In particular, f̂(0) is real and nonnegative.



Now let t ∈ R \ {0}. Then

Re
(
f̂(t)

)
= Re

(
1
2π

∫ ∞

−∞
e−itxf(x) dx

)
=

1
2π

∫ ∞

−∞
cos(−tx)f(x) dx =

1
2π

∫ ∞

−∞
cos(tx)f(x) dx.

Set I =
[

π
3t ,

2π
3t

]
. Then cos(tx) ≤ −1

2 for all x ∈ I.
We claim that there is ε > 0 and a subset E ⊂ I with Lebesgue measure

m(E) > 0 such that f(x) > ε for all x ∈ E. If not, for n ∈ Z>0 set set En =
{
x ∈

I : f(x) > 1
n

}
. Then m(En) = 0. Therefore the set

{
x ∈ I : f(x) > 0

}
=

∞⋃
n=1

En

has measure zero, which is impossible because m(I) > 0 and f(x) > 0 for all x ∈ R.
This contradiction proves the claim.

Now we have

Re
(
f̂(t)

)
=

1
2π

∫ ∞

−∞
cos(tx)f(x) dx ≤ 1

2π

∫
R\E

f(x) dx +
1
2π

∫
E

(
− 1

2

)
ε dx

≤ 1
2π

∫
R

f(x) dx− εm(E)
4π

= f̂(0)− εm(E)
4π

< f̂(0).

This completes the proof. �

Remark: In fact, it is true that
∣∣f̂(t)

∣∣ < f̂(0) for t 6= 0, although this takes a bit
more work to prove.

Extra Credit. (40 extra credit points) Let D = {z ∈ C : |z| < 1}. Prove that the
series

∞∑
n=1

z2n+1

n2

converges to a continuous function f(z) on D which is holomorphic on D. Further
prove (almost all the credit is for this part) that there does not exist any pair (Ω, g)
in which Ω is a region with Ω∩ ∂D 6= ∅ and g is a holomorphic function on Ω such
that g|Ω∩D = f |Ω∩D.

Solution. The series converges uniformly on D because |z2n+1/n2| ≤ 1
n2 for z ∈ D

and
∑∞

n=1
1

n2 < ∞. Therefore f is continuous.
If we write f(z) =

∑∞
n=0 cnzn, then |cn| ≤ 1 for all n. It is immediate that the

series has radius of convergence at least 1. (This also follows from the previous
paragraph.) Therefore f is holomorphic on D.

The main step in proving the last statement is to show that limr→1− Re(f ′(rz)) =
∞ for every z of the form exp(2πik/2l) with k ∈ Z and l ∈ Z>0∪{0}. By the theorem
on term by term differentiation of power series, we have

f ′(z) =
∞∑

n=1

(2n + 1)z2n

n2



for all z ∈ D. Fix k ∈ Z and l ∈ Z>0∪{0}, and set z = exp(2πik/2l). Let 0 < r < 1.
Then for n ≥ l,

(2n + 1)(rz)2
n

n2
=

(2n + 1)r2n

n2
.

Set

M0 =
l∑

n=1

(2n + 1)
n2

.

For any M ∈ R there is r0 < 1 and n ≥ l such that

(2n + 1)r2n

0

n2
> M + M0,

and for r0 < r < 1 we have

Re(f ′(rz)) ≥ (2n + 1)r2n

0

n2
− Re

(
l∑

n=1

(2n + 1)(rz)2
n

n2

)

≥ (2n + 1)r2n

0

n2
−

l∑
n=1

(2n + 1)|rz|2n

n2
> (M + M0)−M0 = M.

This completes the proof that limr→1− Re(f ′(rz)) = ∞.
Now suppose Ω is a region with Ω ∩ ∂D 6= ∅, and suppose g is a holomorphic

function on Ω such that g|Ω∩D = f |Ω∩D. Then we can choose k ∈ Z and l ∈ Z>0∪{0}
such that z = exp(2πik/2l) ∈ Ω. It follows from the previous paragraph that g′ is
not bounded on any neighborhood of z. This contradicts continuity of g′ at z. �

Remark: For the last part, it is not enough to show that the radius of conver-
gence of the power series is at most 1. Indeed, the series

∑∞
n=1 zn has radius of

convergence 1, but one can take Ω = C \ {1} and g(z) = (1− z)−1.


