MATH 618 (SPRING 2010): FINAL EXAM SOLUTIONS

Instructions: All lemmas, claims, examples, counterexamples, etc. require proof, except when explicitly stated otherwise.

Closed book: No notes, books, calculators, cell phones, or other electronic devices.

1. (a) (10 points) State Morera's Theorem.

Solution. Theorem 10.17 of Rudin: Let $\Omega \subset \mathbb{C}$ be open, and let $f: \Omega \to \mathbb{C}$ be continuous. Suppose that for every closed triangle in Ω with boundary path γ , one has $\int_{\gamma} f(\zeta) d\zeta = 0$. Then f is holomorphic on Ω .

The continuity hypothesis is essential.

(b) (10 points) State Cauchy's Formula for a convex set.

Solution. This is 10.15 of Rudin: Let $\Omega \subset \mathbb{C}$ be a convex open set. Let γ be a closed path in Ω , and let $f: \Omega \to \mathbb{C}$ be a holomorphic function. Then for every $z \in \Omega \setminus \operatorname{Ran}(\gamma)$, we have

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \operatorname{Ind}_{\gamma}(z) \cdot f(z).$$

(c) (10 points) State the Fourier Inversion Theorem.

Solution. Theorem 9.11 of Rudin: Let $f \in L^1(\mathbb{R})$, and suppose that also $\hat{f} \in L^1(\mathbb{R})$. For $x \in \mathbb{R}$ set

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f}(t) e^{itx} dt.$$

Then g = f almost everywhere.

Rudin also includes the statement that $g \in C_0(\mathbb{R})$.

Substantial partial credit will be given for the version for $L^2(\mathbb{R})$, Theorem 9.13(d) of Rudin.

2. (30 points) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that

$$f(z+2010) = f(z)$$
 and $f(z+i) = f(z)$

for all $z \in \mathbb{C}$. Prove that f is constant.

Solution. Let

$$R = \{ x + iy \colon x \in [0, \ 2010] \text{ and } y \in [0, 1] \} \quad \text{and} \quad M = \sup_{z \in R} |f(z)|.$$

This number is finite because R is compact and f is continuous. We show $|f(z)| \le M$ for all $z \in \mathbb{C}$. Liouville's Theorem will then imply that f is constant.

Date: 7 June 2010.

Let $z \in \mathbb{C}$. Choose $m, n \in \mathbb{Z}$ such that

$$\operatorname{Re}(z) - 2010 \, m \in [0, \, 2010)$$
 and $\operatorname{Im}(z) - n \in [0, 1).$

Then $z - (2010 m + in) \in R$, so (using the periodicity hypotheses)

$$|f(z)| = |f(z - (2010 \, m + in))| \le M.$$

This completes the proof.

3. (25 points) Give an example of a measurable function $f \colon \mathbb{R} \to \mathbb{C}$ such that there is $g \in L^2(\mathbb{R})$ with $\widehat{g} = f$, but such that there is no $g \in L^1(\mathbb{R})$ with $\widehat{g} = f$.

Solution. Set $f = \chi_{[-1,1]}$. Then f is not the Fourier transform of a function in $L^1(\mathbb{R})$, because f is not continuous. However, f is the Fourier transform of a function in $L^2(\mathbb{R})$, because $f \in L^2(\mathbb{R})$.

Of course, there are many other possible choices for f.

4. (a) (40 points) Evaluate

$$\int_{-\infty}^{\infty} \frac{e^{-(x-i)^2}}{x-i} \, dx - \int_{-\infty}^{\infty} \frac{e^{-(x+i)^2}}{x+i} \, dx.$$

Solution. Set

$$I_1 = \int_{-\infty}^{\infty} \frac{e^{-(x-i)^2}}{x-i} \, dx \quad \text{and} \quad I_2 = \int_{-\infty}^{\infty} \frac{e^{-(x+i)^2}}{x+i} \, dx,$$

so we are to find $I_1 - I_2$.

First, let's check that these integrals actually exist. We have

$$\left|\frac{e^{-(x-i)^2}}{x-i}\right| = \frac{|e^{-x^2+2ix+1}|}{\sqrt{x^2+1}} = \frac{|e^{-x^2+1}|}{\sqrt{x^2+1}} \le e \cdot e^{-x^2},$$

and e^{-x^2} is integrable on $(-\infty, \infty)$, so the integrand for I_1 is in $L^1(\mathbb{R})$. The same estimate holds for I_2 .

estimate holds for I_2 . Set $f(z) = \frac{1}{z}e^{-z^2}$ for $z \in \mathbb{C} \setminus \{0\}$. For r > 0 let $\gamma_{r,1}$ be the straight line path from -r - i to r - i, with domain [0, 2r], let $\gamma_{r,3}$ be the straight line path from r - i to r + i, with domain [2r, 2r + 2], let $\gamma_{r,2}$ be the straight line path from r + ito -r + i, with domain [2r + 2, 4r + 2], and let $\gamma_{r,4}$ be the straight line path from -r + i to -r - i, with domain [4r + 2, 4r + 4]. (The indexing is out of sequence, to match the names I_1 and I_2 already chosen.) Let γ_r be the concatenation of these paths, which is a piecewise C^1 closed path in $\mathbb{C} \setminus \{0\}$ with domain [0, 4r + 4].

We claim that $\operatorname{Ind}_{\gamma_r}(0) = 1$. We use Theorem 10.37 of Rudin. Note that $\operatorname{Ind}_{\gamma_r}(si)$ has the same value for all s < -1, by continuity of the index. Since $\{si: s \in (-\infty, -1) \text{ is unbounded, this value must be zero. Set } \rho = \min(r, 1)$. Apply Theorem 10.37 of Rudin, with a = -i and $b = \rho$. We have

$$D_+ = \{z \in B_\rho(-i) \colon \text{Im}(z) > -1\}$$
 and $D_- = \{z \in B_\rho(-i) \colon \text{Im}(z) < -1\}.$

(These sets are both connected because they are convex.) It follows that for all $\varepsilon \in (0, \rho)$, we have $\operatorname{Ind}_{\gamma_r}((-1 + \varepsilon)i) = 1$. The set

$$U = \left\{ z \in \mathbb{C} \colon |\operatorname{Re}(z)| < r \text{ and } |\operatorname{Im}(z)| < 1 \right\}$$

is a convex, hence connected, open set contained in $\mathbb{C} \setminus \operatorname{Ran}(\gamma_r)$. Therefore $\operatorname{Ind}_{\gamma_r}(z)$ has the same value for all $z \in U$. So $\operatorname{Ind}_{\gamma_r}(0) = 1$, proving the claim.

(One can also use a homotopy from γ to a positively oriented circle with center zero.)

Therefore

$$\int_{\gamma_r} f(z) \, dz = 2\pi i \operatorname{Res}(f;0)$$

by the Residue Theorem. Using the series expansion

$$f(z) = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-z^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n-1}}{n!}$$

we calculate $\operatorname{Res}(f; 0) = 1$.

To simplify the notation, set

$$I_k(r) = \int_{\gamma_{r,k}} f(z) \, dz$$

Observe that

$$I_1(r) = \int_{-r}^r \frac{e^{-(x-i)^2}}{x-i} \, dx \quad \text{and} \quad I_2(r) = -\int_{-r}^r \frac{e^{-(x+i)^2}}{x+i} \, dx.$$

(The sign in the second one comes from the negative orientation.) Therefore $\lim_{r\to\infty} I_1(r) = I_1$ and $\lim_{r\to\infty} I_2(r) = -I_2$. Furthermore,

$$|I_3(r)| = \left| \int_{-1}^1 \frac{e^{-(r+it)^2}}{r+it} \, i \, dt \right| \le \int_{-1}^1 \frac{|e^{-r^2 - irt + t^2}|}{\sqrt{r^2 + t^2}} \, dt \le \frac{2e^{-r^2 + 1}}{r}.$$

Therefore $\lim_{r\to\infty} I_3(r) = 0$. The same estimate shows that $\lim_{r\to\infty} I_4(r) = 0$. Now

$$2\pi i = \lim_{r \to \infty} \int_{\gamma_r} f(z) \, dz = \lim_{r \to \infty} [I_1(r) + I_2(r) + I_3(r) + I_4(r)] = I_1 - I_2 + 0 + 0.$$

$$I_1 - I_2 = 2\pi i.$$

So $I_1 - I_2 = 2\pi i$.

(b) (10 points) Use the result of Part (a) to evaluate

$$\int_{-\infty}^{\infty} \frac{e^{-(x-i)^2}}{x-i} \, dx \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{e^{-(x+i)^2}}{x+i} \, dx.$$

Solution. As in the previous solution, call these integrals I_1 and I_2 . We calculate the real and imaginary parts of I_1 :

$$I_{1} = \int_{-\infty}^{\infty} \frac{(x+i)e^{-x^{2}+2ix+1}}{(x+i)(x-i)} dx = \int_{-\infty}^{\infty} \frac{(x+i)[\cos(2x)+i\sin(2x)]e^{-x^{2}+1}}{x^{2}+1} dx$$
$$= \int_{-\infty}^{\infty} \frac{[x\cos(2x)-\sin(2x)]e^{-x^{2}+1}}{x^{2}+1} dx + i \int_{-\infty}^{\infty} \frac{[\cos(2x)+x\sin(2x)]e^{-x^{2}+1}}{x^{2}+1} dx.$$

The integrand in the real part is an odd function, so that integral is zero.

Since the integrands are complex conjugates of each other, one gets $I_2 = \overline{I_1}$. Now combining the equations

$$\operatorname{Re}(I_1) = \operatorname{Re}(I_2) = 0$$
, $\operatorname{Im}(I_2) = -\operatorname{Im}(I_1)$, and $I_1 - I_2 = 2\pi i$,
we get $I_1 = \pi i$ and $I_2 = -\pi i$.

5. (30 points) Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Let $A(D) \subset C(\overline{D})$ be the disk algebra, the closed subspace of $C(\overline{D})$ given by

$$A(D) = \{ f \in C(\overline{D}) \colon f|_D \text{ is holomorphic} \}.$$

(You need not prove that A(D) is a subspace or that it is closed in $C(\overline{D})$.)

Prove that there exists a bounded linear functional $\omega \colon C(\overline{D}) \to \mathbb{C}$ such that $\omega(f) = f'(\frac{1}{2})$ for all $f \in A(D)$.

Solution. Define $\omega_0: A(D) \to \mathbb{C}$ by $\omega_0(f) = f'(\frac{1}{2})$. We claim that ω_0 is continuous. Suppose $(f_n)_{n \in \mathbb{Z}_{>0}}$ is a sequence in A(D) such that $f_n \to f$ in A(D). Then $f_n|_D \to f|_D$ uniformly, and in particular $f_n|_D \to f|_D$ uniformly on compact sets. Therefore $f'_n|_D \to f'|_D$ uniformly on compact sets. In particular, $\lim_{n\to\infty} f'_n(\frac{1}{2}) = f'(\frac{1}{2})$. This shows that ω_0 is continuous.

The Hahn-Banach Theorem now implies that there is a bounded linear functional $\omega: C(\overline{D}) \to \mathbb{C}$ such that $\omega|_{A(D)} = \omega_0$.

Alternate solution. Let ω_0 be as in the first solution. Instead of proving that ω_0 is continuous, we give an explicit bound on $\|\omega_0\|$. Let $f \in A(D)$. Since f is holomorphic on $B_{1/2}(\frac{1}{2})$, Cauchy's Estimates show that

$$|f'(\frac{1}{2})| \le 2 \sup (|f(z)|: z \in B_{1/2}(\frac{1}{2})) \le 2||f||.$$

Thus $\|\omega_0\| \leq 2$.

Now apply the Hahn-Banach Theorem as in the first solution.

Second alternate solution (sketch). We give an explicit formula for ω . Specifically, define $\gamma \colon [0, 2\pi] \to \mathbb{C}$ by $\gamma(t) = \frac{1}{2} + \frac{1}{4}e^{it}$. Then define

$$\omega(f) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{\left(\frac{1}{2} - z\right)^2} dz$$

for $f \in C(\overline{D})$. Then ω is obviously linear. The computation, valid for $f \in C(\overline{D})$,

$$|\omega(f)| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(\gamma(t))| \cdot |\gamma'(t)|}{\left|\frac{1}{2} - \gamma(t)\right|^2} \, dt = \frac{1}{2\pi} \int_0^{2\pi} 4^2 \cdot \frac{1}{4} \cdot |f(\gamma(t))| \, dt \le 4 \|f\|$$

implies that $\|\omega\| \leq 4$. That $\omega(f) = f'(\frac{1}{2})$ for all $f \in A(D)$ follows from the form of Cauchy's Formula that gives derivatives of f in terms of path integrals, as in one of the homework problems. You would need to prove the appropriate formula, but a fair amount of partial credit will be given even if you don't. \Box

Remark: The optimal estimate $\|\omega\| \leq 2$ is obtained by the method of the last solution by taking $\gamma(t) = \frac{1}{2} + \frac{1}{2}e^{it}$ or $\gamma(t) = e^{it}$. A bit more work is needed, since these paths do not satisfy $\operatorname{Ran}(\gamma) \subset D$. One can show, however, that they do give $f'(\frac{1}{2})$.

6. (35 points) Let $f : \mathbb{R} \to \mathbb{R}$ be an integrable function such that f(x) > 0 for all $x \in \mathbb{R}$. Prove that for all $t \neq 0$, we have $\operatorname{Re}(\widehat{f}(t)) < \widehat{f}(0)$.

Solution. We have

$$\widehat{f}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) \, dx.$$

In particular, $\hat{f}(0)$ is real and nonnegative.

Now let $t \in \mathbb{R} \setminus \{0\}$. Then

$$\operatorname{Re}(\widehat{f}(t)) = \operatorname{Re}\left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} f(x) \, dx\right)$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(-tx) f(x) \, dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(tx) f(x) \, dx.$$

Set $I = \begin{bmatrix} \frac{\pi}{3t}, \frac{2\pi}{3t} \end{bmatrix}$. Then $\cos(tx) \leq -\frac{1}{2}$ for all $x \in I$. We claim that there is $\varepsilon > 0$ and a subset $E \subset I$ with Lebesgue measure m(E) > 0 such that $f(x) > \varepsilon$ for all $x \in E$. If not, for $n \in \mathbb{Z}_{>0}$ set set $E_n = \{x \in E\}$ $I: f(x) > \frac{1}{n}$. Then $m(E_n) = 0$. Therefore the set

$$\left\{x \in I \colon f(x) > 0\right\} = \bigcup_{n=1}^{\infty} E_n$$

has measure zero, which is impossible because m(I) > 0 and f(x) > 0 for all $x \in \mathbb{R}$. This contradiction proves the claim.

Now we have

$$\operatorname{Re}(\widehat{f}(t)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(tx) f(x) \, dx \le \frac{1}{2\pi} \int_{\mathbb{R}\setminus E} f(x) \, dx + \frac{1}{2\pi} \int_{E} \left(-\frac{1}{2}\right) \varepsilon \, dx$$
$$\le \frac{1}{2\pi} \int_{\mathbb{R}} f(x) \, dx - \frac{\varepsilon m(E)}{4\pi} = \widehat{f}(0) - \frac{\varepsilon m(E)}{4\pi} < \widehat{f}(0).$$

This completes the proof.

Remark: In fact, it is true that $|\widehat{f}(t)| < \widehat{f}(0)$ for $t \neq 0$, although this takes a bit more work to prove.

Extra Credit. (40 extra credit points) Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Prove that the series

$$\sum_{n=1}^{\infty} \frac{z^{2^n+1}}{n^2}$$

converges to a continuous function f(z) on \overline{D} which is holomorphic on D. Further prove (almost all the credit is for this part) that there does not exist any pair (Ω, g) in which Ω is a region with $\Omega \cap \partial D \neq \emptyset$ and g is a holomorphic function on Ω such that $g|_{\Omega \cap D} = f|_{\Omega \cap D}$.

Solution. The series converges uniformly on \overline{D} because $|z^{2^n+1}/n^2| \leq \frac{1}{n^2}$ for $z \in \overline{D}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$. Therefore f is continuous. If we write $f(z) = \sum_{n=0}^{\infty} c_n z^n$, then $|c_n| \leq 1$ for all n. It is immediate that the

series has radius of convergence at least 1. (This also follows from the previous paragraph.) Therefore f is holomorphic on D.

The main step in proving the last statement is to show that $\lim_{r\to 1^-} \operatorname{Re}(f'(rz)) =$ ∞ for every z of the form $\exp(2\pi i k/2^l)$ with $k \in \mathbb{Z}$ and $l \in \mathbb{Z}_{>0} \cup \{0\}$. By the theorem on term by term differentiation of power series, we have

$$f'(z) = \sum_{n=1}^{\infty} \frac{(2^n + 1)z^{2^n}}{n^2}$$

for all $z \in D$. Fix $k \in \mathbb{Z}$ and $l \in \mathbb{Z}_{>0} \cup \{0\}$, and set $z = \exp(2\pi i k/2^l)$. Let 0 < r < 1. Then for $n \ge l$,

$$\frac{(2^n+1)(rz)^{2^n}}{n^2} = \frac{(2^n+1)r^{2^n}}{n^2}.$$

 Set

$$M_0 = \sum_{n=1}^{l} \frac{(2^n + 1)}{n^2}.$$

For any $M \in \mathbb{R}$ there is $r_0 < 1$ and $n \ge l$ such that

$$\frac{(2^n+1)r_0^{2^n}}{n^2} > M + M_0,$$

and for $r_0 < r < 1$ we have

$$\operatorname{Re}(f'(rz)) \ge \frac{(2^n+1)r_0^{2^n}}{n^2} - \operatorname{Re}\left(\sum_{n=1}^l \frac{(2^n+1)(rz)^{2^n}}{n^2}\right)$$
$$\ge \frac{(2^n+1)r_0^{2^n}}{n^2} - \sum_{n=1}^l \frac{(2^n+1)|rz|^{2^n}}{n^2} > (M+M_0) - M_0 = M.$$

This completes the proof that $\lim_{r\to 1^-} \operatorname{Re}(f'(rz)) = \infty$.

Now suppose Ω is a region with $\Omega \cap \partial D \neq \emptyset$, and suppose g is a holomorphic function on Ω such that $g|_{\Omega \cap D} = f|_{\Omega \cap D}$. Then we can choose $k \in \mathbb{Z}$ and $l \in \mathbb{Z}_{>0} \cup \{0\}$ such that $z = \exp(2\pi i k/2^l) \in \Omega$. It follows from the previous paragraph that g' is not bounded on any neighborhood of z. This contradicts continuity of g' at z. \Box

Remark: For the last part, it is *not* enough to show that the radius of convergence of the power series is at most 1. Indeed, the series $\sum_{n=1}^{\infty} z^n$ has radius of convergence 1, but one can take $\Omega = \mathbb{C} \setminus \{1\}$ and $g(z) = (1-z)^{-1}$.