MATH 618 (SPRING 2010): FINAL EXAM

Instructions: All lemmas, claims, examples, counterexamples, etc. require proof, except when explicitly stated otherwise.

Closed book: No notes, books, calculators, cell phones, or other electronic devices.

1. (a) (10 points) State Morera's Theorem.
(b) (10 points) State Cauchy's Formula for a convex set.
(c) (10 points) State the Fourier Inversion Theorem.
2. (30 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that

$$
f(z+2010)=f(z) \quad \text { and } \quad f(z+i)=f(z)
$$

for all $z \in \mathbb{C}$. Prove that f is constant.
3. (25 points) Give an example of a measurable function $f: \mathbb{R} \rightarrow \mathbb{C}$ such that there is $g \in L^{2}(\mathbb{R})$ with $\widehat{g}=f$, but such that there is no $g \in L^{1}(\mathbb{R})$ with $\widehat{g}=f$.
4. (a) (40 points) Evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{-(x-i)^{2}}}{x-i} d x-\int_{-\infty}^{\infty} \frac{e^{-(x+i)^{2}}}{x+i} d x
$$

(b) (10 points) Use the result of Part (a) to evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{-(x-i)^{2}}}{x-i} d x \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{e^{-(x+i)^{2}}}{x+i} d x
$$

5. (30 points) Let $D=\{z \in \mathbb{C}:|z|<1\}$. Let $A(D) \subset C(\bar{D})$ be the disk algebra, the closed subspace of $C(\bar{D})$ given by

$$
A(D)=\left\{f \in C(\bar{D}):\left.f\right|_{D} \text { is holomorphic }\right\} .
$$

(You need not prove that $A(D)$ is a subspace or that it is closed in $C(\bar{D})$.)
Prove that there exists a bounded linear functional $\omega: C(\bar{D}) \rightarrow \mathbb{C}$ such that $\omega(f)=f^{\prime}\left(\frac{1}{2}\right)$ for all $f \in A(D)$.
6. (35 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function such that $f(x)>0$ for all $x \in \mathbb{R}$. Prove that for all $t \neq 0$, we have $\operatorname{Re}(\widehat{f}(t))<\widehat{f}(0)$.

Extra Credit. (40 extra credit points) Let $D=\{z \in \mathbb{C}:|z|<1\}$. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{z^{2^{n}+1}}{n^{2}}
$$

converges to a continuous function $f(z)$ on \bar{D} which is holomorphic on D. Further prove (almost all the credit is for this part) that there does not exist any pair (Ω, g) in which Ω is a region with $\Omega \cap \partial D \neq \varnothing$ and g is a holomorphic function on Ω such that $\left.g\right|_{\Omega \cap D}=\left.f\right|_{\Omega \cap D}$.

[^0]
[^0]: Date: 7 June 2010.

