This assignment is due Monday 13 April at 10:00 pm.

Conventions on measures: m is ordinary Lebesgue measure, \(m = (2\pi)^{-1/2}m \), and in expressions of the form \(\int f(x) dx \), ordinary Lebesgue measure is assumed.

Problem 1. This problem is about giving direct proofs of results on approximate identities.

1. Let \(X \) be a locally compact \(\sigma \)-compact Hausdorff space. Prove that there is a sequence \((g_n)_{n \in \mathbb{Z}^+} \) in \(C^0(X) \) consisting of functions with compact support and with values in \([0, 1]\) such that for every \(f \in C^0(X) \) we have \(\lim_{n \to \infty} \| g_n f - f \|_{\infty} = 0 \).

2. Let \(g \in L^1(\mathbb{R}) \) satisfy \(g(x) = 0 \) for all \(x \in \mathbb{R} \setminus [-1, 1] \), \(g(x) \geq 0 \) for all \(x \in \mathbb{R} \), and \(\int \! g \, d\mathcal{M} = 1 \). For \(n \in \mathbb{Z}^+ \) and \(x \in \mathbb{R} \), define \(g_n(x) = ng(nx) \). Let \(p \in [1, \infty) \). Prove that for every \(f \in L^p(\mathbb{R}) \) we have \(\lim_{n \to \infty} \| g_n * f - f \|_p = 0 \).

In part (1), if \(X \) is not \(\sigma \)-compact, one needs a net instead of a sequence. You will need to prove that there are compact subsets \(K_1, K_2, \ldots \subset X \) such that

\[
K_1 \subset \text{int}(K_2) \subset K_2 \subset \text{int}(K_3) \subset K_3 \subset \cdots \quad \text{and} \quad \bigcup_{n=1}^{\infty} K_n = X.
\]

(I couldn’t find this explicitly in Rudin’s book, but maybe I didn’t look in the right place.)

In part (2), I suggest first proving the result for \(f \in C_c(\mathbb{R}) \). You will also need the following result, which you may use without proof.

Proposition 2. Let \(p \in [1, \infty] \), let \(f \in L^1(\mathbb{R}) \), and let \(g \in L^p(\mathbb{R}) \). Then \(f * g \in L^p(\mathbb{R}) \), and \(\| f * g \|_p \leq \| f \|_1 \| g \|_p \).

Problem 3. Give a “direct” proof of the following part of Theorem 9.6 of Rudin’s book: if \(f \in L^1 \) then \(\hat{f} \in C_0(\mathbb{R}) \). That is, prove this first when \(f \) is the characteristic function of a bounded interval, use this result and approximation to prove \(\hat{f} \in C_0(\mathbb{R}) \) when \(f \in C_c(\mathbb{R}) \), and then use approximation to prove \(\hat{f} \in C_0(\mathbb{R}) \) for general \(f \in L^1 \).

You will need \(\| \hat{f} \|_{\infty} \leq \| f \|_1 \). This proof takes longer than Rudin’s proof, but the methods are useful much more generally, and the first step explains why the result is even true.

Problem 4 counts as two ordinary problems.

Problem 4 (Rudin, Chapter 9, Problem 13abc). For \(c \in (0, \infty) \) define \(f_c : \mathbb{R} \to \mathbb{C} \) by \(f_c(x) = \exp(-cx^2) \) for \(x \in \mathbb{R} \).

1. Compute \(f_c \).
(2) Prove that there exists a unique \(c \in (0, \infty) \) such that \(\hat{f}_c = f_c \).

(3) Let \(a, b \in (0, \infty) \). Prove that there exist \(\gamma \) and \(c \) such that \(f_a * f_b = \gamma f_c \), and find explicit formulas for \(\gamma \) and \(c \) in terms of \(a \) and \(b \).

Hint for part (1): Let \(g = \hat{f}_c \). Then an integration by parts gives \(2cg'(t) + tg(t) = 0 \) for all \(t \). If you use this method, you will need to prove (directly, or by citing theorems) that this equation, together with other information you have, determines \(g \) uniquely.

You may take as known the result that \(\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \). (This is proved by writing the square of the integral as \(\int_{\mathbb{R}^2} e^{-x^2 - y^2} \, dx \, dy \) and computing it with polar coordinates in \(\mathbb{R}^2 \).)