This assignment is due Monday 11 May at 10:00 pm. It will probably require reading in the book ahead of the lectures.

The following problem counts as one ordinary problem.

Problem 1 (Rudin, Chapter 10, Problem 2). Let f be an entire function. Suppose that for every $a \in \mathbb{C}$, in the power series representation

$$f(z) = \sum_{n=0}^{\infty} c_{n,a}(z - a)^n,$$

there is $n \in \mathbb{Z}_{\geq 0}$ such that $c_{n,a} = 0$. Prove that f is a polynomial.

Hint: $n! c_{n,a} = f^{(n)}(a)$.

This is Problem 2 in Chapter 10 of Rudin’s book. Rudin wrote (1) as “$f(z) = \sum_{n=0}^{\infty} c_n(z - a)^n$”. Suppressing the dependence on a in the notation for the coefficients makes proper writing of both the problem and its solution awkward.

The following problem counts as one ordinary problem.

Problem 2 (Rudin, Chapter 10, Problem 3). Suppose that f and g are entire functions, and that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. What conclusion can you draw?

The following problem counts as one ordinary problem.

Problem 3 (Rudin, Chapter 10, Problem 4). Let f be an entire function. Suppose that there are constants $A, B > 0$ and $k \in \mathbb{Z}_{>0}$ such that $|f(z)| \leq A + B|z|^k$ for all $z \in \mathbb{C}$. Prove that f is a polynomial.

The following problem counts as one ordinary problem.

Problem 4 (Rudin, Chapter 10, Problem 6). Prove that there is a region Ω such that $\exp(\Omega) = B_1(1)$. Prove that there are are many such choices of Ω. Prove that, for any such choice of Ω, the restriction $\exp_{\mid \Omega}$ is injective. Fix one such choice of Ω, and define $\log B_1(1) \to \Omega$ to be the inverse function of $\exp_{\mid \Omega}$. Prove that $\log'(z) = z^{-1}$. Find the coefficients a_n in the expansion

$$\frac{1}{z} = \sum_{n=0}^{\infty} a_n(z - 1)^n,$$

and hence find the coefficients c_n in the expansion

$$\log(z) = \sum_{n=0}^{\infty} c_n(z - 1)^n.$$

In which other disks can this be done?