Math 618

\(f: [0,1] \to \mathbb{C} \) piecewise \(C^1 \), \(f: \text{Ran}(\gamma) \to \mathbb{C} \) continuous. Then \(\int_{\gamma} f(z)dz = \int_0^1 f(x(t)) \gamma'(t) dt \)

Recall: \((X, \mu)\) is mes. space, \(\varphi: X \to [0,1] \) bijective, \(\mathcal{D}(\varphi \gamma) = \gamma \). Then \(f(z) = \int_X \frac{1}{(z - \xi)^d} \mu(d\xi) \) is representable by power series (strong sense).

Remarks: consider piecewise \(C^1 \) reparametrization \(\gamma \), given by a piecewise \(C^1 \) strictly incr or strictly decr bijection \(\varphi: [0,1] \to [0,1] \). Replace \(\gamma \) by \(\varphi \gamma \). Check:

\(\varphi \gamma \) is still piecewise \(C^1 \) (more break points, coming from those of \(\gamma \) and of \(\varphi \)).

Using chain rule, what: if \(\gamma \) is strictly incr then \(\int_{\gamma} f(z)dz = \int_{\gamma} f(\varphi \gamma)(\varphi \gamma'(t)) dt \).

^ "orientation reversing."

Sums:

1) Suppose \(\gamma: [\gamma_1, \gamma_2, \cdots] \to \mathbb{C} \) for \(j = 1, 2, \cdots \), with \(\gamma_j(0) = 0 \). Form concatenation:

\(\gamma: [\gamma_1, \gamma_2, \cdots, \gamma_j, \gamma_{j+1}, \cdots] \to \mathbb{C} \). (It: \(\gamma_1 \) on \([0, p_1]\), and \(\gamma_{j+1} \) on \([p_j, p_{j+1}]\). Then \(\int_{\gamma} f(z)dz = \sum_j \int_{\gamma_j} f(z)dz \).

2) For \(\Omega \subset \mathbb{C} \), let \(C_1(\Omega) \) be the free holomorphic gp on the set of piecewise \(C^1 \) curves in \(\Omega \). [not quite the same as \(C_1(\Omega, \mathbb{C}) \) they used in path, and always sumdmn: std 1-simplex]. If \(f: \Omega \to \mathbb{C} \) is cont., not on \(\partial \Omega \) gp hom \(C_1(\Omega) \otimes \mathbb{C} \to \mathbb{C} \) extending \(\partial \Omega \).

Define length \(\ell(\gamma) \) of \(\gamma \) (curve) as \(\int_{\gamma} |\gamma'(t)| dt \). (It's what you think it should be)

Abs: \(|\int_{\gamma} f(z)dz| \leq \ell(\gamma) \sup_{z \in \text{Ran}(\gamma)} |f(z)| \).

Easy to curve: (1) \(\gamma(t) = r + re^{it} \) on \([0, 2\pi]\), positively oriented circle center \(r \), radius \(c \).

(2) oriented line segment. (3) oriented triangle.

Then let \(\gamma: [\gamma_1, \gamma_2] \to \mathbb{C} \) be piecewise \(C^1 \), and closed \(\gamma(0) = \gamma(1) \). Define, for \(z \in \mathbb{C} \setminus \text{Ran}(\gamma) \), \(\text{Ind}_\gamma(z) = \frac{1}{2\pi i} \lim_{\delta \to 0} \int_{\gamma(\gamma)} \frac{1}{s - z} ds \). Then \(\text{Ind}_\gamma \) is cont., integer valued, and zero on the unbounded component of \(\mathbb{C} \setminus \text{Ran}(\gamma) \).

\(\text{Ran}(\gamma) \) is open, so \(\exists \epsilon > 0 \) s.t. \(\text{Ran}(\gamma) \subset B_{\epsilon}(0) \). Then \(\mathbb{C} \setminus B_{\epsilon}(0) \subset C \setminus \text{Ran}(\gamma) \) and is connected.

Prove \(\text{Ind}_\gamma(z) = \frac{1}{2\pi i} \lim_{\delta \to 0} \int_{\gamma(\gamma)} \frac{-z(x)}{s - z} ds \). This is rop by power series, so cont.

Mirror, \(\text{Im} \text{Ind}_\gamma(z) \) is zero (easy), so if pure \(Z \)-valued, then \(\text{Ind}_\gamma(z) \) must be zero on unbounded component.
Prime \(\mathbb{P} \)-valued. Fix \(z \), and set \(\varphi(b) = \exp \left(\int_0^b \frac{\partial \varphi(s)}{\partial \varphi(s) - z} \, ds \right) \).

Heuristic: \(\varphi(b) = \exp \left(\log (\varphi(b) - z) - \log (\varphi(s) - z) \right) \), with \(\log(___) \) chosen to vary continuously with \(b \). (\(\varphi(s) = \text{real} \) but \(\log \) is multiple valued, hence values differ by \(2\pi i \cdot \text{integer} \).

Claim \(\varphi(z) = 1 \). Proof: Fix \(z \), calculate \(\frac{\varphi'(b)}{\varphi(b) - z} = \frac{\partial \varphi(s)/\partial \varphi(s) - z}{\varphi(b) - z} \), except for \(b \) in a finite set \(S \).

Off \(S \), \(b \to \frac{\varphi(b)}{\varphi(b) - z} \) has a limit (quotient rule) equal to \(\frac{\varphi(0)}{\varphi(0) - z} \)\(\text{ at } b \to 0 \).

Next, \(\varphi(z) = 1 \), and so \(\frac{\varphi(b)}{\varphi(b) - z} = \frac{\varphi(s)}{\varphi(s) - z} \), (\(s \) is constant) = \(\frac{\varphi(0)}{\varphi(0) - z} \).

So \(\varphi(z) = 1 \). Claim proved.

Claim says: \(\exp \left(2\pi i \log \varphi(z) \right) = 1 \), so \(\log \varphi(z) \) is locally constant on \(\mathbb{C} \setminus \text{Re}(x) \).

Ex: \(\varphi(s) = a + re^{i\theta} \), on \([0, 2\pi] \). Claim: \(\text{Ind}_\varphi(z) = 1 \) when \(|z| = r \). Ref:

| Enough to do case \(z = 0 \). |
| \(\text{B}_r(z) \) is connected. |
| Here, compute:

\[
\text{Ind}_\varphi(z) = 1 \sum_{k=1}^{2\pi} \left(\lim_{x \to 0} \frac{d}{dx} \varphi(x) \right) (2\pi i (k)) = 1. \]

\[
\text{Thm (Candy's Thm.) We only get this generally after careful work.}
\]

Let \(\Omega \subset \mathbb{C} \) be open. Let \(\gamma \) be a closed curve in \(\Omega \) (more generally, a "cycle" in \(\mathbb{C} \)).

st. \(\text{Ind}_\gamma(z) = 0 \) \(\forall z \in \Omega \setminus \gamma \). Let \(p \in \overline{\Omega} \). Let \(f: \Omega \to \mathbb{C} \) be cont., and hol. on \(\Omega \setminus \{p\} \). Then \(\int_\gamma f(z) \, dz = 0. \) ['] [f is cut at \(p \).]

Note: (i) We will see that \(\gamma \to f \) hol \(\Rightarrow \) \(f \) hol on \(\Omega \). But this is needed in proof.

(ii) to \(\mathbb{C} \) cont. in \(\mathbb{R}^2 \) thru the Green's Thm: it says \(\int f(z) \, dz \) is the integral over the "inside" of \(\gamma \) of some combination of \(\partial f \) and \(\mathbb{C} \)-Requ.

Imply that comb of \(\partial f \) is zero.

\[
\text{Thm (Candy's Formula.) Same hypotheses, but assuming \(f \) hol on \(\Omega \) (no exception at \(p \).) Then \(\text{Ind}_\gamma(z) = \int_\gamma \frac{f(z)}{z - t} \, dz \) for \(z \in \Omega \setminus \text{Re}(x). \)
\]

Note: If \(\Omega = \mathbb{C} \setminus \{0\} \), \(f(z) = \frac{1}{z} \), \(\gamma \) \(\gamma \) = \(e^{it} \) on \([0, 2\pi] \). Then

the winding \# hypothesis fails: \(0 \in \mathbb{C} \setminus \Omega \) but \(\text{Ind}_\gamma(0) = 1 \neq 0. \)