Math 618

Theorem (Maximum Modulus Theorem): If \(|f(z)| \) is a function on \(\mathbb{C} \) that is holomorphic at \(z_0 \) and \(f(z) \neq 0 \) for all \(z \neq z_0 \), then \(|f(z)| \leq |f(z_0)| \) for all \(z \in \mathbb{C} \). If \(f(z) \neq 0 \) in \(\mathbb{C} \), then \(f(z) \) is constant.

Idea: Consider the function \(g(z) = \frac{1}{2\pi} \int_{|\theta|=1} \frac{f(z) - f(a) + r e^{i\theta}}{|z - a + r e^{i\theta}|^2} \, d\theta \). As \(r \to 0^+ \), \(g(z) \) approaches \(f(z) \). If \(|f(z)| > \sup|f| \), then \(|f(z)| \to \infty \) as \(|z - a| \to 0 \).

Proof: Write \(f(z) = \sum a_n (z-a)^n \) in \(\mathbb{C} \). Suppose \(|f(z)| > \sup|f| \) for \(z \neq a \). Then \(|f(z)| \to \infty \) as \(|z-a| \to 0 \). This means \(c_n = \limsup_{r \to 0^+} \frac{|a_n|}{r^n} \) exists for \(n \to 0 \). If \(c_n \) exists, then \(f(z) = \sum c_n (z-a)^n \) is a **holomorphic function** on \(\mathbb{C} \) with \(\sum c_n \frac{(z-a)^n}{n!} \).

Then \(f(z) \) is **holomorphic**.

Note: We'll need \(f \) to be continuous (not just \(\mathbb{C} \) but \(\mathbb{C} \)).

Proof: Assume \(f \) is holomorphic \(\mathbb{C} \). If \(M \leq \sup|f| \) on \(\mathbb{C} \), then \(|f(z)| \leq M \) for all \(z \in \mathbb{C} \).

Write \(f(z) = \sum c_n (z-a)^n \) in \(\mathbb{C} \). For \(s \in (0, r) \), we have \(\sum_{n=0}^{\infty} \frac{(z-a)^n}{n!} \leq \frac{M^2}{r^2} \sum_{n=0}^{\infty} \frac{(a-r e^{i\theta})^n}{n!} \).

Therefore \(|f(z)| \leq \frac{M^2}{r^2} \). The \(\forall s < r \), so \(f(z) \to f(a) \) by continuity. Take \(r \to 0^+ \); the function \(f(z) \) exists for \(r = 0 \).

Then \(f \) is the limit of something, so \(f \) is holomorphic.

Proof: Assume \(f \) is holomorphic \(\mathbb{C} \), \(M \geq \sup|f| \) on \(\mathbb{C} \). Then \(|f(z)| \leq M \).

Write \(f(z) = \sum c_n (z-a)^n \) in \(\mathbb{C} \). For \(s \in (0, r) \), we have \(\sum_{n=0}^{\infty} \frac{(z-a)^n}{n!} \leq \frac{M^2}{r^2} \sum_{n=0}^{\infty} \frac{(a-r e^{i\theta})^n}{n!} \).

Therefore \(|f(z)| \leq \frac{M^2}{r^2} \). The \(\forall s < r \), so \(f(z) \to f(a) \) by continuity. Take \(r \to 0^+ \); the function \(f(z) \) exists for \(r = 0 \).

Then \(f \) is the limit of something, so \(f \) is holomorphic.

Proof: Assume \(f \) is holomorphic \(\mathbb{C} \). Then \(f \) is also uniformly continuous on \(\mathbb{C} \).

Write \(f(z) = \sum c_n (z-a)^n \) in \(\mathbb{C} \). Then \(\sum_{n=0}^{\infty} \frac{(z-a)^n}{n!} \leq \frac{M^2}{r^2} \sum_{n=0}^{\infty} \frac{(a-r e^{i\theta})^n}{n!} \).

Therefore \(|f(z)| \leq \frac{M^2}{r^2} \). The \(\forall s < r \), so \(f(z) \to f(a) \) by continuity. Take \(r \to 0^+ \); the function \(f(z) \) exists for \(r = 0 \).

Then \(f \) is the limit of something, so \(f \) is holomorphic.

Proof: Assume \(f \) is holomorphic \(\mathbb{C} \). Then \(f \) is also uniformly continuous on \(\mathbb{C} \).

Write \(f(z) = \sum c_n (z-a)^n \) in \(\mathbb{C} \). Then \(\sum_{n=0}^{\infty} \frac{(z-a)^n}{n!} \leq \frac{M^2}{r^2} \sum_{n=0}^{\infty} \frac{(a-r e^{i\theta})^n}{n!} \).

Therefore \(|f(z)| \leq \frac{M^2}{r^2} \). The \(\forall s < r \), so \(f(z) \to f(a) \) by continuity. Take \(r \to 0^+ \); the function \(f(z) \) exists for \(r = 0 \).

Then \(f \) is the limit of something, so \(f \) is holomorphic.

Proof: Assume \(f \) is holomorphic \(\mathbb{C} \). Then \(f \) is also uniformly continuous on \(\mathbb{C} \).

Write \(f(z) = \sum c_n (z-a)^n \) in \(\mathbb{C} \). Then \(\sum_{n=0}^{\infty} \frac{(z-a)^n}{n!} \leq \frac{M^2}{r^2} \sum_{n=0}^{\infty} \frac{(a-r e^{i\theta})^n}{n!} \).

Therefore \(|f(z)| \leq \frac{M^2}{r^2} \). The \(\forall s < r \), so \(f(z) \to f(a) \) by continuity. Take \(r \to 0^+ \); the function \(f(z) \) exists for \(r = 0 \).

Then \(f \) is the limit of something, so \(f \) is holomorphic.
Conv. it denies: Let $k \in \mathbb{N}$ be ft. Choose $\varepsilon > 0$ s.t. $|x + 1| < 2\varepsilon$. Set $p = d(x, \infty)$. Then $|f(x) - f(\infty)|$ is smaller.

Theorem 4. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ s.t. $|f_n(x) - f(x)| < \frac{\varepsilon}{2}$ on N. Now let $z \in K$ be L. Fix $\varepsilon < 2\varepsilon$. Then $
abla f_n(z) - \nabla f(z) = \frac{z}{2} - \frac{z}{2}. \quad \begin{aligned} \sup |f_n'(z) - f'(z)| &< \varepsilon. \end{aligned}$

There are other parts: For ex., using Cauchy's Analysis, the limit $f(x)$, etc. --

Con. $f_n \to f$, and in a short study, $f_n \to f$ is also in a short study.

Recall (4), $D = B(0, \varepsilon)$. Then $A(D) = \{ f \in C(D) : \nabla f \not\equiv 0 \}$ with $\| f \|_\infty$. Then $A(D)$ is complete.

Proof. Show closed in $C(D)$. Suppose $f_n \in A(D)$, and $f_n \to f$ uniformly with $t \in C(D)$. Then $f_n \to f$ uniform is the result. Then $f_n \to f$ is also.

We do not conclude $f' \to f'$ uniform in D, only on compact subsets of D.

Similar results: $H(0) = \{ f : D \to \mathbb{C} : f \text{ hol}\}$ with $\| f \|_\infty$ is complete.

Can replace D and B with $D \subseteq \overline{D}$ if D open, \overline{D} closed.

For very thin f

Then $D \subseteq \overline{D}$ open, f hol on D, $z \in D$, $f(z) = 0$. Then $\exists V \subseteq \overline{D}$ with $z \in V$ s.t.

(1) f/V is \overline{V}.
(2) $W = f(V)$ is open.
(3) $(f/V)^{-1} : W \to V$ is hol.

Use:

Lemma: $D \subseteq \overline{D}$ open, f hol on D. Define $g : D \times \Delta \to C$ by $g(z, w) = \begin{cases} \frac{f(z) - f(w)}{z - w} & z \not= w \\ f'(z) & z = w \end{cases}$

Then g is continuous.