Let \(D \subseteq \mathbb{C} \) be open. Then \(f \) is a \textit{meromorphic} function if \(D \) is a \textit{holomorphic} function \(f : D \setminus A \to \mathbb{C} \) for some set \(A \subseteq D \) with no limit points in \(D \), and such that \(f \) has \textit{isolated singularities} on \(A \) (since this is above, except that require the singularities to be poles).

We usually tacitly assume no removable singularities.

Abuse of language: A \(A \) is the set of poles [singularities] of \(f \).

Example: \(f \) hol on \(D \), \(D \cap \mathbb{R} > 0 \) and \(f \) has no limit. For \(z = 0 \), \(f \) is meromorphic.

\(A \) ead one gives a pole at \(\frac{1}{z} \).

Note: A above is ahol. Also, \(A = \emptyset \).

Temp def: \(f \) has isolated singularities on \(D \), a pole at the singularities. For \(r > 0 \), \(f \) hol on \(B_{\inf}(0) \), define \(\operatorname{Res}_r(f ; a) = \frac{1}{2\pi i} \int_{|z|=r} f(z)\,dz \) with \(\gamma(t) = a + re^{it} \) on \([0, 2\pi] \).

Lemma: \(r_1, r_2 \) ad defined. Then \(\operatorname{Res}_{r_1}(f ; a) = \operatorname{Res}_{r_2}(f ; a) \).

Proof: WLOG \(r_1 < r_2 \). Set \(\Gamma = [\gamma_{r_2} \setminus \gamma_{r_1}] \). \text{Then} \(\text{Ind}_{\Gamma}(f) = \frac{1}{2\pi i} \int_{|z|=r} f(z)\,dz \). \text{Calculate} \(\text{Ind}_{\gamma_{r_1}}(f) \), \(\text{Ind}_{\gamma_{r_2}}(f) \) = use ind. of \(\text{Ind}_{\Gamma} \).

Since \(f \) is hol on an open set containing \(\operatorname{Res}_{r}(f) \) and all \(z \) it, \(\text{Ind}_{\Gamma}(f) = 0 \); general Cauchy Thm says \(\int f(z)\,dz = 0 \).

Defn: \(\operatorname{Res}_{r}(f ; a) \) is the common value of \(\operatorname{Res}_{r_1}(f ; a) \) for \(r > 0 \) as temp defn.

Lemma: Suppose \(f \) has a pole at \(a \) with principal part \(\sum_{k=1}^{m} \frac{C_k}{(z-a)^k} \). Then \(\operatorname{Res}_{r}(f ; a) = C_1 \).

Proof: Choose \(r > 0 \) as in temp defn, \(r > a \). Set \(g(z) = f(z) - \sum_{k=1}^{m} \frac{C_k}{(z-a)^k} \) with the removable singularity filled in. Then \(\int_{\gamma_{r}} g(z)\,dz = 0 \) by Cauchy’s Thm. Also check \(\int_{\gamma_{r}} \frac{dz}{(z-a)^{k+1}} = 0 \).

There is an analog for an ess. sing.: the “principal part” is now a series \(\sum_{k=1}^{\infty} \frac{C_k}{(z-a)^k} \) which converges unit on a set in \(B_{\inf}(a) \) so still get \(\operatorname{Res}_{r}(f ; a) = C_1 \).

Lemma: (not in Rudin) Suppose \(f \) has a simple pole \(\text{at } a \). Then

\[\operatorname{Res}_{r}(f ; a) = \lim_{z \to a} (z - a) f(z). \]

Proof: Write \(f(z) = g(z) + \frac{C_1}{z-a} \) with \(g \) hol in a nbhd of \(a \). Then check \(\lim_{z \to a} (z-a) g(z) = 0 \)

and \(\lim_{z \to a} \frac{C_1}{(z-a)^{k+1}} = C_k \).

It pole is order 2 or more, or if have an ess sing., then \(\lim_{z \to a} (z-a) f(z) \) does not exist.
\textbf{Residue Theorem:} \(\Omega \subset \mathbb{C} \) open, \(f \) has isolated singular points in \(\Omega \), sing with \(A \). Suppose \(\Gamma \) is a cycle in \(\Omega \setminus A \).

\(\text{Ind}_f(2) = 0 \quad \forall 2 \in \Omega \setminus A \). Then \(S = \{ a \in A : \text{Ind}_f(a) \neq 0 \} \) is finite, and

\[
\frac{1}{2\pi i} \sum_{a \in A} \text{Res}(f, a) = \sum_{a \in A} \text{Ind}_f(a) \text{ Res}(f, a).
\]

\textbf{Notes:}
1. \(\text{Ind}_f(2) = 0 \quad \forall 2 \in \Omega \setminus A \).

2. If \(\text{Ind}_f(a) \neq 0 \quad \forall a \in A \), this is Cauchy's Theorem.

\textbf{Proof:}
Define \(K = \text{Re}(\Gamma) \cup \{ z \in \mathbb{C} : \text{Ind}_f(z) \neq 0 \} \). Then \(K \subset \Omega \) by hypothesis. Also \(\mathbb{C} \setminus K \) is the union of some of the components of \((\Omega \setminus \text{Re}(\Gamma)) \), including the unbounded compact. So \(K \) is closed a boldd, i.e.,

Write \(S = \{ a_1, a_2, \ldots, a_m \} \) where \(a_1, a_2, \ldots, a_m \) distinct.

Define \(\gamma_j(t) = a_j + r_j e^{it} \quad (0, 2\pi) \) with \(r_j > 0 \). \(B_{r_j}(a_j) \subset (\Omega \setminus A) \cup \gamma_j \).

Also require \(B_{r_j}(a_j) \) disjoint for \(j = 1, \ldots, m \).

Take \(\Gamma_0 = \Gamma - \sum_{j=1}^{m} \text{Ind}_f(a_j) \gamma_j \).

This is a cycle in \(\Omega \setminus A \).

If \(\gamma \notin \Omega \), then \(\text{Ind}_f(2) = 0 \) by hyp. and

\[
\text{Ind}_f(2) = 0 \quad \text{since } B_{r_0}(a_0) \text{ is convex and in } \Omega.
\]

Thus \(\text{Ind}_f(2) = 0 \quad \forall 2 \in \Omega \setminus A \).

If \(\gamma \notin S \) then by construction \(\text{Ind}_f(2) = 0 \).

If \(\gamma \in \Omega \setminus \text{Re}(\Gamma) \) by def. if \(S, \text{Ind}_f(2) = 0 \) and, since \(\gamma \notin B_{r_0}(a_0), \text{Ind}_f(2) = 0 \).

Therefore \(\text{Ind}_f(2) = 0 \quad \forall 2 \notin \Omega \setminus A \), and \(f \) holm. in \(\Omega \setminus A \), so

Using \(\frac{1}{2\pi i} \sum_{a \in A} f(a) = \text{Res}(f, a) \), get result. \(\Box \)