MATH 618 (SPRING 2024, PHILLIPS): HOMEWORK 5

Problem 1 (Problem 12 in Chapter 10 of Rudin's book). For $t \in \mathbb{R}$, use the Residue Theorem to compute

$$
\int_{-\infty}^{\infty}\left(\frac{\sin (x)}{x}\right)^{2} e^{i t x} d x
$$

The next problem counts as two ordinary problems.
Problem 2 (Problem 8 in Chapter 10 of Rudin's book). Let P and Q be polynomials such that $\operatorname{deg}(Q) \geq \operatorname{deg}(P)+2$. Let R be the rational function $R(z)=$ $P(z) / Q(z)$ for $z \in \mathbb{C}$ such that $Q(z) \neq 0$.
(1) Prove that $\int_{-\infty}^{\infty} R(x) d x$ is equal to $2 \pi i$ times the sum of the residues of R in the upper half plane. (Replace the integral over $[-A, A]$ by the integral over a suitable semicircle, and apply the Residue Theorem.)
(2) What is the analogous statement for the lower half plane?
(3) Use this method to compute

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

Problem 3 (Problem 11 in Chapter 10 of Rudin's book). Let $\alpha \in \mathbb{C}$ satisfy $|\alpha| \neq 1$. Calculate

$$
\int_{0}^{2 \pi} \frac{1}{1-2 \alpha \cos (\theta)+\alpha^{2}} d \theta
$$

by integrating $(z-\alpha)^{-1}(z-1 / \alpha)^{-1}$ around the unit circle.
Problem 4 (Problem 13 in Chapter 10 of Rudin's book). Prove that

$$
\int_{0}^{\infty} \frac{1}{1+x^{n}} d x=\frac{\pi / n}{\sin (\pi / n)}
$$

for $n \in \mathbb{Z}_{>0}$ with $n \geq 2$.

[^0]
[^0]: Date: 1 May 2024.

